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Introduction: The Gielis superformula given as  
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describes almost any closed curve in terms of the deformed circle (or ellipse), ( ),g θ  and 
another function, ( ),f θ  and their parameters (Gielis, 2003; Gielis and Gerats, 2004). The 
function ( )f θ  may be considered as a modifier of the Gielis function, ( )g θ . We find in nature 
a variety of interesting shapes that may possibly be described by the super-formula. 
 
 The Gielis super-formula is not the first attempt to seek for a mathematical pattern in 
nature. D’Arcy Thompson (1917) demonstrated that mathematical formulas and procedures 
can describe the forms of many living organisms, plant leaves and flowers.  The history of such 
efforts go as far back in the past as to the 13th Century when Fibonacci observed mathematical 
regularity in nature (Szpiro, 2006). A number of other scientists also attempted to explain the 
observed mathematical regularities in the natural objects. 
 
Estimation of Gielis Parameters: For a scientific purpose, Gielis parameters need to be 
estimated from empirical data. Presently, we are concerned with the possibilities of the same. 
Let the n true points be [ ( , ); 1,2,..., ]i i iz x y i n= = , of which the corresponding observed values 
are ( , )i iz x y′ ′ ′= , possibly with errors of measurement and displacement of origin by ( , )x yc c , 

unknown to us. Let  ( , )x yc c� �  be the approximate or assumed values of ( , ).x yc c  Let us denote 

by ( , ) ( , ).i i i i x i yz x y x c y c′ ′= = − −� � � ��  From these values we obtain 2 2( )i i ir x y= +� � � . We also obtain 
1tan ( / )i i iy xθ −=� � � . On the other hand, we obtain 1 2 3ˆ ( , , , , , , ). ( ),i ir g a b m n n n fθ θ= �� �� � � � �  where (.)g  is 

the Gielis super-formula defined in (4) and ( )f θ  is variously defined.  The wavy bar on the 
arguments of (.)g  and (.)f  indicates that all parameters have taken on some assumed values, 
which may not be the correct values. The deviation of assumed values of parameters from their 

true values gives rise to ˆ( )i i id abs r r= −�  and consequently 2 2
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values of parameters are the true values, 2S  can be zero, but smaller it is, closer are the 
assumed values of the parameters from their true values (assuming empirical uniqueness of the 
parameters to a given set of data).  Thus we have to find the values of Gielis parameters in (.)g  
and (.)f  such that 2S  is minimum. 
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 Minimization of 2S  poses formidable problems due to two reasons. First, the Gielis 
parameters are possibly not unique to data. The three parameters, 1 2,n n  and 3n  of the deformed 
circle, ( ),g θ  interact with each other even if we assume that the parameters of the modifying 
function, ( ),f θ  do not influence them. However, that is not the case. As a matter of fact, all of 
them interact with each other. In econometric literature, the multi-collinearity problem presents 
an instance of such interaction among the parameters (resulting into non-zero covariances 
among them). This fact apart, the parameters span a highly nonlinear surface of 2S , which has 
innumerably many local minima. The author has observed that a highly adaptive direct search 
methods such as the Nelder-Mead algorithm and the Box algorithm (Nelder and Mead, 1964; 
Box, 1965) are often caught into local optima while finding the globally optimal values of the 
Gielis parameters. Although Box’s algorithm strews random numbers over the entire surface of 
the optimand function that endows it with a great power to escape the local optimum points, it 
has no good strategy to come out of the trap if it is caught in a local optimum. Multiple starting 
points occasionally succeed, but often fail to give a desirable result.  
 
 As it is well known, most of the nonlinear optimization procedures that were developed 
in the 1960’s or before are extremely prone to be caught in the local optima if the surface to be 
optimized is substantially irregular, ridged and multi-modal. In the due course, researchers in 
the field of operations research turned to learning from nature and imitating the process in 
which natural processes attain a minimum. Understanding the process of adaptation of living 
beings to their environment for a survival led to development of the ‘genetic algorithm’ 
(Holland, 1975) and the optimization method based on adaptation (Goldberg, 1989; Wright, 
1991). This method mimics the process of survival of the fittest. On the other side, researchers 
learned from physics – the process of annealing in metallurgy (Kirkpatrick et al., 1983) and the 
method of ‘simulated annealing’ was developed.   
 
The Simulated Annealing Method of Optimization: The simulated annealing method 
mimics the annealing process in metallurgy. In an annealing process a metal in the molten state 
(at a very high temperature) is slowly cooled so that the system at any time is approximately in 
thermodynamic equilibrium. As cooling proceeds, the system becomes more ordered – the 
liquid freezes or the metal re-crystallizes – attaining the ground state at T=0.  This process is 
simulated through the Monte Carlo experiment (Metropolis et al. 1953). If the initial 
temperature of the melt is too low or cooling is done unduly fast the metal may become 
‘quenched’ due to being trapped in a local minimum energy state (meta-stable state) forming 
defects or freezing out. 

The simulated annealing method of optimization makes very few assumptions 
regarding the function to be optimized, and therefore, it is quite robust with respect to irregular 
surfaces. In this method, the mathematical system describing the problem mimics the 
thermodynamic system. The current solution to the problem mimics the current state of the 
thermodynamic system, the objective function mimics the energy equation for the 
thermodynamic system, and the global minimum mimics the ground state (Kirkpatrick et al., 
1983; Cerny, 1985). However, nothing in the numerical optimization problem directly mimics 
the temperature, T, in the thermodynamic system underlying the metallurgical process of 
annealing. Therefore, a complex abstraction mimics it. An arbitrary choice of initial value of a 
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variable called ‘temperature’, how many iterations are performed at each ‘temperature’, the 
step length at which the decision variables are adjusted, and the rate of fall of ‘temperature’ at 
each step as ‘cooling’ proceeds, together make an ‘annealing schedule’. This schedule mimics 
the cooling process. At a high ‘temperature’ the step lengths at which the decision variables are 
adjusted are larger than those at a lower ‘temperature’.  Whether the system is trapped into 
local minima (quenching takes place) or it attains the global minimum (faultless 
crystallization) is dependent on the said annealing schedule. A wrong choice of the initial 
‘temperature’, or the rate of fall in the ‘temperature’ leads to quenching or entrapment of the 
solution in the local minima. The method does not provide any clear guideline as to the choice 
of the ‘annealing schedule’ and often requires judgment or trial and error. If the schedule is 
properly chosen, the process attains the global minimum. It is said that using this method is an 
art and requires a lot of experience and judgment. 

The Simulation Experiments: We have experimented with twelve different models. All these 
models are instances of a deformed circle, (.),g  modified by different modifier functions, (.).f  
Three typical instances of (.)g  have been chosen. Their graphs are presented in Figures (M-01, 
M-02 and M-03). The parameters of (.)g  are given in table A.1. Four typical modifier 
functions are chosen. Their graphs are presented in M-10, M-20, M-30 and M-40 and their 
functional forms are given below. The chosen values of n4 and n5 are also given in table-A.1. 
 
Model 10: 10 ( )f θ = 2 2 0.5

4 5[ (3cos( ) cos(3 )) (3sin( ) sin(3 )) ]r n t t n t t= − + − : (Nephroid)  … (2) 
Model 20: 20 ( )f θ = r = n4 + n5 cos(t):  (Limaçon)                          … (3) 

Model 30: 30 ( )f θ = r = n4 - n5 cos(t) + abs(cos(t))3                      …(4) 
Model 40: 40 ( )f θ =  r = n4 exp(n5 abs(sin(t)))                      … (5) 

In all the four modifier functions, n4 and n5 are parameters and 0 2 .t π≤ ≤  
 

In case of each model, hundred uniformly distributed random points have been generated 
with the parameters specified in the relevant (.)g  and (.).f  The simulated annealing method of 
optimization has been repetitively applied to estimate the parameters with different values of 
initial temperature, T. This method requires the bounds (the lower and the upper limits; LL and 
UL) on the parameters to be specified. For all the 12 models we have used the identical set of 
bounds, specified in table-A.1. The jointly estimated parameters of (.)g  and (.)f  are presented 

in table-A.1. Their graphs are presented in Fig. ( 1,2,..., 4; 1,2,3)ijM i j= = . The red points are 
those generated by the true parameters while the blue ones are generated by using the estimated 
parameters. For each model, the estimated (blue) points are superimposed on the generated 
(red) points to facilitate a visual assessment of the quality of fit, which is quantitatively 
represented by the value of S2. 
   
The Findings: First, the simulated annealing method of optimization performs very well in 
fitting the Gielis curves to data. It performs better than the genetic algorithm in the majority of 
cases. The author used the genetic algorithm for estimation of Gielis parameters (Mishra, 
2006). Difficulties faced with that method prompted the author to switch over to the simulated 
annealing method of optimization. In this method also, it is not always easy to escape the 
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trappings of local optima. Fittings in M-41 and M-42 are perhaps caught in the sub-optimal 
traps as indicated by the relatively large values of S2. 
 

Secondly, a perusal of the magnitudes of exponential parameters ( 1 2 3, ,n n n ) suggests 
that very often they deviate significantly from the true parameters but they may have a 
tendency to keep some proportionate relations among themselves. This tendency indicates the 
lack of empirical uniqueness of the parameters of the Gielis super-formula (Mishra, 2006). The 
problems are intensified in hybrid models, where (.)g  is modified by (.).f  On the basis of 
fitness (alone) one cannot say whether the one estimate (of parameters) is more reliable than 
the others. Thus, the exponential parameters intermingle with each other as well as with the 
parameters of the modifier function.   

 
Some Observations: Looking at the shapes of the hybrid models, it is very difficult to guess 
the specification of (.)f  that modifies the deformed ellipse/circle, (.).g  In case of (.)g  the 
specification is fixed, only the parameters vary. However, in case of (.)f  nothing can be said 
a-priori. Since estimation depends on the specification of (.)f , in practice it would be very 
difficult to venture upon the task of estimation of Gielis parameters of arbitrary real life shapes. 
Furthermore, even one estimates the parameters and finds that the fit is acceptably good, how 
to be sure of the roles of the parameters of (.)f  and (.)g ! A scientific outlook would expect 
the parameters to be liable to interpretation. That would possibly be a far cry for the enterprise 
of estimation of the Gielis parameters. It appears that the work of Gielis is suitable for 
graphics, but it may not have much significance with respect to the secrets of nature. Szpiro 
(2006) has rightly observed : D’Arcy tried to explain transformation of shapes in terms of 
forces that might have acted on the body of an organism. But, beyond some approximate 
description of a number of organic forms, Gielis offers no explanations of the shapes or the 
parameters of his super-formula. 
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Appendix 
Table-A.1. True & Estimated Gielis Parameters (Modified Curves) with Limits on them 

 cx cy a b n1 n2 n3 m n4 n5 S2  

0 0 1 1 0.6 2 3 3 3 2 0 T 
0 0 0 0 -80 -80 -80 1 0 0 LL  

15 15 50 50 80 80 80 10 5 5 UL  

M 
 # 
11 

0.0303 0.0000 0.8178 23.9384 6.1427 3.3738 0.2229 6.0400 3.4583 2.3029 2.0358  E 
0 0 1 1 2 2 6 5 3 2 0 T 
0 0 0 0 -80 -80 -80 1 0 0 LL  

15 15 50 50 80 80 80 10 5 5 UL  

M 
 # 
12 

0.0000 0.1021 6.0376 0.8767 -3.8274 -0.0158 2.8309 10.000 2.9837 1.9869 2.5097 E 
0 0 1 1 8 4 -4 6 3 2 0 T 
0 0 0 0 -80 -80 -80 1 0 0 LL  

15 15 50 50 80 80 80 10 5 5 UL  

M 
 # 
13 

0.0000 0.0000 0.2717 2.0359 19.7701 9.0342 -9.8961 6.000 4.2797 2.8524 0.0026 E 
0 0 1 1 0.6 2 3 3 3 2 0 T 
0 0 0 0 -80 -80 -80 1 0 0 LL  

15 15 50 50 80 80 80 10 5 5 UL  

M 
 # 
21 

0.0428 0.0000 8.5868 0.7304 -8.2281 0.3996 3.5140 6.085 3.3880 2.2219 0.1561 E 
0 0 1 1 2 2 6 5 3 2 0 T 
0 0 0 0 -80 -80 -80 1 0 0 LL  

15 15 50 50 80 80 80 10 5 5 UL  

M 
 # 
22 

0.0000 0.0419 6.6620 2.1659 12.8108 3.3245 4.7098 9.940 5.0000 3.3155 0.6219 E 
0 0 1 1 8 4 -4 6 3 2 0 T 
0 0 0 0 -80 -80 -80 1 0 0 LL  

15 15 50 50 80 80 80 10 5 5 UL  

M 
 # 
23 

0.0000 0.0000 0.2103 2.0859 30.5799 12.4818 -15.3198 6.000 4.3319 2.8878 0.0010 E 
0 0 1 1 0.6 2 3 3 3 2 0 T 
0 0 0 0 -80 -80 -80 1 0 0 LL  

15 15 50 50 80 80 80 10 5 5 UL  

M 
 # 
31 

0.0000 0.0000 0.8375 0.0357 13.1260 5.1005 -0.6757 5.941 3.3011 2.1886 0.4877 E 
0 0 1 1 2 2 6 5 3 2 0 T 
0 0 0 0 -80 -80 -80 1 0 0 LL  

15 15 50 50 80 80 80 10 5 5 UL  

M 
 # 
32 
  0.0000 0.0000 0.9677 0.4810 -43.4942 -1.8018 12.4391 10.000 3.0442 2.0252 0.5075 E 

0 0 1 1 8 4 -4 6 3 2 0 T 
0 0 0 0 -80 -80 -80 1 0 0 LL  

15 15 50 50 80 80 80 10 5 5 UL  

M 
 # 
33 

0.0000 0.0000 0.4977 1.0103 38.5048 16.3313 19.2912 6.000 3.0138 2.0098 0.0015 E 
0 0 1 1 0.6 2 3 3 3 2 0 T 
0 0 0 0 -80 -80 -80 1 0 0 LL  

15 15 50 50 80 80 80 10 5 5 UL  

M 
 # 
41 

0.0560 0.0369 47.6023 0.2479 -37.1224 -2.3988 12.7253 6.096 2.4362 1.9796 4.8473 E 
0 0 1 1 2 2 6 5 3 2 0 T 
0 0 0 0 -80 -80 -80 1 0 0 LL  

15 15 50 50 80 80 80 10 5 5 UL  

M 
 # 
42 

0.0000 0.1507 39.3609 0.3752 -14.7559 0.5965 5.4151 10.000 2.6299 0.0000 9.1952 E 
0 0 1 1 8 4 -4 6 3 2 0 T 
0 0 0 0 -80 -80 -80 1 0 0 LL  

15 15 50 50 80 80 80 10 5 5 UL  

M 
 # 
43 

0.0000 0.0004 0.3062 1.8282 33.2615 17.3848 16.6389 6.000 4.0534 1.9993 0.0250 E 
M=Model;  LL=Lower Limits;  UL=Upper Limite;  T=True Parameters; E=Estimated Parameters 
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