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Introduction: The Gielis superformula  
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describes almost any closed curve in terms of the deformed circle (or ellipse), ( ),g θ  and another 
function, ( ),f θ  and their parameters (Gielis, 2003). The function ( )f θ  may be considered as a 
modifier of the Gielis function, ( )g θ .  
 
Estimation of Gielis Parameters: For a scientific purpose, Gielis parameters need to be estimated 
from empirical data. Presently, we are concerned with the possibilities of the same. Let the n true points 
be [ ( , ); 1,2,..., ]i i iz x y i n= = , of which the corresponding observed values are ( , )i iz x y′ ′ ′= , possibly 

with errors of measurement and displacement of origin by ( , )x yc c , unknown to us. Let  ( , )x yc c� �  be the 

approximate or assumed values of ( , ).x yc c  Let us denote by ( , ) ( , ).i i i i x i yz x y x c y c′ ′= = − −� � � ��  From 

these values we obtain 2 2( )i i ir x y= +� � � . We also obtain 1tan ( / )i i iy xθ −=� � � . On the other hand, we 

obtain 1 2 3ˆ ( , , , , , , ). ( ),i ir g a b m n n n fθ θ= �� �� � � � �  where (.)g  is the Gielis super-formula defined in (4) and 

( )f θ  is variously defined.  The wavy bar on the arguments of (.)g  and (.)f  indicates that all 
parameters have taken on some arbitrary values, which may not be the correct values. The deviation of 
assumed values of parameters from their true values gives rise to ˆ( )i i id abs r r= −�  and consequently 
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= ≥�  Only if the assumed values of parameters are the true values, 2S  can be zero, but 

smaller it is, closer are the assumed values of the parameters from their true values (assuming empirical 
uniqueness of the parameters to a given set of data).  Thus we have to find the values of Gielis 
parameters in (.)g  and (.)f  such that 2S  is minimum. 
 

Minimization of 2S  poses formidable problems due to two reasons. First, the Gielis parameters 
are not unique to data, suggesting that minima (local as well as global) are located in the valleys or deep 
trenches. The parameters of the deformed circle, ( ),g θ  and the  modifying function, ( ),f θ   interact 
among themselves. A large number of experiments carried out by the author make the basis of this 
view. Secondly, the parameters span a highly nonlinear surface of 2S , which has innumerably many 
local minima (Mishra, 2006). 
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 As it is well known, most of the nonlinear optimization procedures that were developed in the 
1960’s or before are extremely prone to be caught in the local optima if the surface to be optimized is 
substantially irregular, ridged and multi-modal. In the due course, researchers in the field of operations 
research turned to learning from nature and imitating the schemes in which natural processes attain a 
minimum. Understanding the process of adaptation of living beings to their environment for a survival 
led to development of the ‘Genetic Algorithm’ (Holland, 1975) and the optimization method based on 
adaptation (Goldberg, 1989; Wright, 1991). This method mimics the process of survival of the fittest. 
Another very important and effective method - the Particle Swarm method (Eberhart and Kennedy, 
1995; see Parsopoulos and Vrahatis, 2002) - was motivated by the behaviour of birds, fish and insects.  
On the other side, researchers learned from physics – the process of annealing in metallurgy 
(Kirkpatrick et al., 1983) and the method of ‘simulated annealing’ was developed 
 
The Simulated Annealing Method of Global Optimization: The simulated annealing method mimics 
the annealing process in metallurgy. In an annealing process a metal in the molten state (at a very high 
temperature) is slowly cooled so that the system at any time is approximately in thermodynamic 
equilibrium. As cooling proceeds, the system becomes more ordered – the liquid freezes or the metal re-
crystallizes – attaining the ground state at T=0.  This process is simulated through the Monte Carlo 
experiment  (Metropolis et al. 1953).  If the initial temperature of the melt is too low or cooling is done 
unduly fast the metal may become ‘quenched’ due to being trapped in a local minimum energy state 
(meta-stable state) forming defects or freezing out. 

The simulated annealing method of optimization makes very few assumptions regarding the 
function to be optimized, and therefore, it is quite robust with respect to non-quadratic surfaces. In this 
method, the mathematical system describing the problem mimics the thermodynamic system. The 
current solution to the problem mimics the current state of the thermodynamic system, the objective 
function mimics the energy equation for the thermodynamic system, and the global minimum mimics 
the ground state (Kirkpatrick et al., 1983; Cerny, 1985). However, nothing in the numerical 
optimization problem directly mimics the temperature, T, in the thermodynamic system underlying the 
metallurgical process of annealing. Therefore, a complex abstraction mimics it. An arbitrary choice of 
initial value of a variable called ‘temperature’, how many iterations are performed at each 
‘temperature’, the step length at which the decision variables are adjusted, and the rate of fall of 
‘temperature’ at each step as ‘cooling’ proceeds together make an ‘annealing schedule’. This schedule 
mimics the cooling process. At a high ‘temperature’ the step lengths at which the decision variables are 
adjusted are larger than those at a lower ‘temperature’.  Whether the system is trapped into local 
minima (quenching takes place) or it attains the global minimum (faultless crystallization) is dependent 
on the said annealing schedule. A wrong choice of the initial ‘temperature’, or the rate of fall in the 
‘temperature’ leads to quenching or entrapment of the solution in the local minima. The method does 
not provide any clear guideline as to the choice of the ‘annealing schedule’ and often requires judgment 
or trial and error. If the schedule is properly chosen, the process attains the global minimum.  

Particle Swarm Method of Global Optimization: A swarm of birds or insects or a school of fish 
searches for food, protection, etc. in a very typical manner. If one of the members of the swarm sees a 
desirable path to go, the rest of the swarm will follow up quickly.  Every member of the swarm searches 
for the best in its locality - learns from its own experience. Additionally, each member learns from the 
others, typically from the best performer among them. Even human beings show a tendency to learn 
from their own experience, their immediate neighbours and the ideal performers.  

The Particle Swarm method of optimization mimics the said behaviour (see Wikipedia : 
http://en.wikipedia.org/wiki/Particle_swarm_optimization). Every individual of the swarm is 
considered as a particle in a multidimensional space that has a position and a velocity. These particles 
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fly through hyperspace and remember the best position that they have seen. Members of a swarm 
communicate good positions to each other and adjust their own position and velocity based on these 
good positions. There are two main ways this communication is done: (i)  “swarm best” that is known 
to all (ii) “local bests”  are known in neighborhoods of particles. Updating the position and velocity is 
done at each iteration as follows: 

•  

•  
o w is the inertial constant. Good values are usually slightly less than 1.  
o c1 and c2 are constants that say how much the particle is directed towards good 

positions. Good values are usually right around 1.  
o r1 and r2 are random values in the range [0,1].  
o is the best the particle has seen.  
o ˆ

gx  is the global best seen by the swarm. This can be replaced by ˆ
lx , the local best, if 

neighborhoods are being used.  

The Particle Swarm method has many variants. Among them, the Repulsive Particle Swarm 
(RPS) method of optimization (see Wikipedia, http://en.wikipedia.org/wiki/RPSO) is particularly 
effective in finding out the global optimum in very complex search spaces (although it may be slower 
on certain types of optimization problems). Other variants use a dynamic scheme (Liang and 
Suganthan, 2005; Huang et al., 2006).   

In RPS the future velocity,  nextv of a particle at position with a recent velocity is 
calculated by 

 

where, 

• 1 3 3, ,χ χ χ  : random numbers (0,1)∈  

• � : inertia weight (0.01,0.7)∈  

•  : best position of a particle  

•  : best position of a randomly chosen other particle from within the swarm  
•  : a random velocity vector  
• a,b,c : constants  

The future x  that is, nextx  is defined as .next nextx x v= +  Occasionally, when the process is 
caught in a local optimum, some perturbation of  v may be needed. 

The Simulation Experiments: We have experimented with nine different models. All these models are 
instances of a deformed circle, (.),g  modified by different modifier functions, (.).f  Three typical 
instances of (.)g  have been chosen. The parameters of (.)g  are given in table A.1. Three typical 
modifier functions are chosen, as given below. The chosen values of n4 and n5 are also given in table-
A.1. 
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1( )f θ = 2 2 0.5
4 5[ (3cos( ) cos(3 )) (3sin( ) sin(3 )) ]r n t t n t t= − + − : (Nephroid)     … (2) 

2 ( )f θ = r = n4 + n5 cos(t):  (Limaçon)                           … (3) 

3( )f θ = r = n4 - n5 cos(t) + abs(cos(t))3                         …(4) 
  

In all the three modifier functions, n4 and n5 are parameters and 0 2 .t π≤ ≤  
 
In case of each model, hundred uniformly distributed random points have been generated with 

the parameters specified in the relevant (.)g  and (.).f  The Classical simulated annealing (CSA of 
Kirkpatrick et al., 1983) and the Repulsive Particle Swarm methods of optimization (RPS) have been 
repetitively applied to estimate the parameters. The CSA method requires the bounds (the lower and the 
upper limits; LL and UL) on the parameters to be specified. For all the nine models we have used the 
identical set of bounds, specified in table-A.1. However, RPS does not require such bounds. The jointly 
estimated parameters of (.)g  and (.)f  by both methods are presented in table-A.1. Their graphs are 

presented in Fig.A.1 ( , 1, 2,...,3)ijM i j = . The red points are those generated by the true parameters, 

the blue ones are generated by using the RPS-estimated parameters. The CSA-generated points are not 
plotted just to avoid clumsiness. For each model, the RPS-estimated (blue) points are superimposed on 
the generated (red) points to facilitate a visual assessment of the quality of fit, which is quantitatively 
represented by the value of S2.     
   
The Findings: The CSA as well as RPS method of global optimization performs very well in fitting the 
Gielis curves to data. The CSA often performs better than the RPS. In general, increase in the number 
of iterations to obtain the estimates improves performance of these methods greatly. So we do not 
intend to conclude as to the relative performance of these two methods in general. Our observations are 
limited to the present context only.  
 
 The Repulsive Particle Swarm program (written by the author in FORTRAN) converges much 
faster (than the CSA program). It does not require limits on the decision variables either. The initial 
guesses of the decision variables may simply be generated randomly, lying between -0.5 to +0.5 or so. 
These advantages may add to the applicability of RPS in finding global optima of complex multi-modal 
nonlinear optimization problems.   
 
Extrapolation: How reliably can we extrapolate the points on the Gielis’s (.)g  beyond the sample 
points used in estimating the parameters of ˆ (.)g ? Extrapolation has many applications such as shape 
recovery, etc. (Bhabhrawala  and Krovi, 2005). For this exercise, we generated 100 points on (.)g  
randomly and used only 70 of them (red points in Fig.A.2) to fit the Gielis’s ˆ (.)g and the rest 30 points 
(green ones in Fig. A.2) were left out. With the estimated parameters (Table A.2) we generated 1000 
points (blue ones in Fig.A.2) randomly strewn over the entire curve. The scatter shows that the 
estimated parameters can very well predict the points beyond the samples used for estimation. The 
values of S2 in all the three cases are quite small. 
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Appendix 
 

Table-A.1. True & Estimated Gielis Parameters (Modified Curves) with Limits on them 
 cx cy a b n1 n2 n3 m n4 n5 S2  

0 0 1 1 0.6 2 3 3 3 2 0 T 
-15 -15 0 0 -80 -80 -80 0 -10 -10 LL  
15 15 50 50 80 80 80 80 10 10 UL  

0.010 -0.082 0.763 27.987 3.859 2.677 -0.089 6.022 5.898 3.918 0.435 C 

M 
 # 
11 

0.025 -0.087 -0.847 6.166 3.417 2.296 -0.163 6.006 5.996 4.048 0.508 P 
0 0 1 1 2 2 6 5 3 2 0 T 

-15 -15 0 0 -80 -80 -80 0 -10 -10 LL  
15 15 50 50 80 80 80 80 10 10 UL  

-0.005 0.088 0.568 0.831 9.809 3.550 -0.290 10.024 4.714 3.155 0.952 C 

M 
 # 
12 

-0.007 0.094 5.856 -0.969 -8.170 0.913 3.762 10.034 4.570 3.065 0.960 P 
0 0 1 1 8 4 -4 6 3 2 0 T 

-15 -15 0 0 -80 -80 -80 0 -10 -10 LL  
15 15 50 50 80 80 80 80 10 10 UL  

0.000 0.000 0.208 2.830 20.109 9.940 -10.062 6.000 8.484 5.652 0.001 C 

M 
 # 
13 

0.0014 0.001 3.885 -1.631 6.134 2.884 -3.083 6.004 4.894 3.280 0.026 P 
0 0 1 1 0.6 2 3 3 3 2 0 T 

-15 -15 0 0 -80 -80 -80 0 -10 -10 LL  
15 15 50 50 80 80 80 80 10 10 UL  

0.040 0.015 0.951 0.472 -63.643 -4.760 19.382 6.077 3.091 2.029 0.264 C 

M 
 # 
21 

3.3468 0.096 -0.388 1.845 7.971 2.597 -0.123 -4.129 4.354 -2.072 0.094 P 
0 0 1 1 2 2 6 5 3 2 0 T 

-15 -15 0 0 -80 -80 -80 0 -10 -10 LL  
15 15 50 50 80 80 80 80 10 10 UL  

-0.063 0.049 0.410 2.496 13.073 3.808 -0.537 9.940 3.914 2.707 0.315 C 

M 
 # 
22 

1.639 0.061 -0.776 -0.782 10.096 12.156 6.088 -3.963 4.208 0.509 0.790 P 
0 0 1 1 8 4 -4 6 3 2 0 T 

-15 -15 0 0 -80 -80 -80 0 -10 -10 LL  
15 15 50 50 80 80 80 80 10 10 UL  

0.000 0.000 43.724 10.289 -58.308 42.069 29.224 6.000 9.624 6.415 0.005 C 

M 
 # 
23 

0.004 0.010 6.149 -1.034 2.049 1.722 -1.013 -6.009 3.024 2.024 0.019 P 
0 0 1 1 0.6 2 3 3 3 2 0 T 

-15 -15 0 0 -80 -80 -80 0 -10 -10 LL  
15 15 50 50 80 80 80 80 10 10 UL  

-0.982 -0.039 0.949 5.796 15.318 4.294 1.637 5.959 3.381 1.294 0.504 C 

M 
 # 
31 

-0.541 -0.024 0.703 -1.693 5.921 3.156 0.105 -5.934 4.098 2.000 0.619 P 
0 0 1 1 2 2 6 5 3 2 0 T 

-15 -15 0 0 -80 -80 -80 0 -10 -10 LL  
15 15 50 50 80 80 80 80 10 10 UL  

1.217 0.027 13.680 50.000 50.370 11.819 10.236 8.052 7.876 2.254 2.371 C 

M 
 # 
32 
  

-0.092 0.0038 -0.747 -0.046 6.826 2.767 -0.154 -9.953 3.636 2.267 0.728 P 
0 0 1 1 8 4 -4 6 3 2 0 T 

-15 -15 0 0 -80 -80 -80 0 -10 -10 LL  
15 15 50 50 80 80 80 80 10 10 UL  

0.000 0.000 0.004 1.003 -78.492 -21.839 39.256 6.000 2.995 1.996 0.006 C 

M 
 # 
33 

0.005 0.047 0.748 2.075 3.956 11.822 1.479 5.985 4.018 2.695 1.132 P 
M=Model;  LL=Lower Limits;  UL=Upper Limits;  T=True Parameters;  C and P are Estimated Parameters : C = Classical 
Simulated Annealing method;   P = Repulsive Particle Swarm Method   
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Figures-A.1. (Plots of Generated  and RPS-estimated points) 

 
 

Table-A.2. True (T) and Estimated (E) Parameters of Gielis’s g(.) function by RPS Method 
Parameters 

xC  yC  a  b  1n  2n  3n  m  2S  
T 0.0 0.0 1.0 1.0 0.6 2.0 3.0 3.0 0.0 G 

I E 0.0145 -0.0023 1.1282 0.6544 -6.1967 -0.1674 2.9399 -6.0949 0.0035 
T 0.0 0.0 1.0 1.0 2.0 2.0 6.0 5.0 0.0 G 

II E -0.0155 0.0138 1.6507 0.6637 -7.5254 -0.1936 3.5724 -9.9795 0.0268 
T 0.0 0.0 1.0 1.0 8.0 4.0 -4.0 6.0 0.0 

 
M 
O 
D 
E 
L 
  

G 
III E 0.0050 -0.0001 -1.8626 0.9682 3.9035 1.3954 -1.9119 6.0284 0.0170 

Figure. A.2 
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