
Three Paradoxes in Utility Theory 

Background: The expected utility hypothesis is the hypothesis in economics that the 
utility of an agent facing uncertainty is calculated by considering utility in each possible 
state and constructing a weighted average. The weights are the agent's estimate of the 
probability of each state. The expected utility is thus an expectation in terms of 
probability theory. To determine utility according to this method, the decision maker 
must rank their preferences according to the outcomes of various decision options. 
According to the theory, if someone prefers A to B and B to C, then weights for the 
weighted average must exist such that she is indifferent between receiving B outright and 
gambling - with the specified weights - between A and C. 

Daniel Bernoulli (1738) gave the earliest known written statement of this 
hypothesis as a way to resolve the St. Petersburg Paradox. In the expected utility 
theorem, v. Neumann and Morgenstern proved that any "normal" preference relation over 
a finite set of states can be written as an expected utility. (Therefore, it is also called von-
Neumann Morgenstern utility.) Von Neumann and Morgenstern published this in their 
Theory of Games and Economic Behavior in 1944. It is important because it was 
developed shortly after the Hicks-Allen “ordinal revolution” of the 1930's, and it revived 
the idea of cardinal utility in economic theory. Economics has not resolved whether (and 
in what cases) utility is cardinal or ordinal. 

A related concept is the certainty equivalent of a gamble. The more risk-averse a 
person is, the more he will be prepared to pay to eliminate risk, for example accepting $1 
instead of a 50% chance of $3, even though the expected value of the latter is more. 
People may be risk-averse or risk-loving depending on the amounts involved and on 
whether the gamble relates to becoming better off or worse off; this is a possible 
explanation for why the same person may buy both an insurance policy and a lottery 
ticket. However, expected utility as a descriptive model of decisions under risk has in 
recent years been replaced by more sophisticated variants that take irrational deviations 
from the expected utility model into account; compare Prospect theory and the general 
article on Behavioral finance. 

Framing: Framing means the manner in which a rational choice problem has been 
presented. Amos Tversky and Daniel Kahneman have shown that framing can affect the 
outcome (ie. the choices one makes) of choice problems, to the extent that several of the 
classic axioms of rational choice do not hold. Tversky and Kahneman (1981) 
demonstrated systematic reversals of preference when the same problem is presented in 
different ways, for example in the 'Asian disease' problem. Participants were asked to 
"imagine that the U.S. is preparing for the outbreak of an unusual Asian disease, which is 
expected to kill 600 people. Two alternative programs to combat the disease have been 
proposed. Assume the exact scientific estimate of the consequences of the programs are 
as follows." The first group of participants were presented with a choice between two 
programs: 

• Program A: "200 people will be saved"  



• Program B: "there is a one-third probability that 600 people will be saved, and a 
two-thirds probability that no people will be saved"  

72 percent of participants preferred program A (the remainder, 28 percent, opting for 
program B). The second group of participants were presented with the choice between: 

• Program C: "400 people will die"  
• Program D: "there is a one-third probability that nobody will die, and a two-third 

probability that 600 people will die"  

In this decision frame, 78 percent preferred program D, with the remaining 22 percent 
opting for program C. However, programs A and C, and programs B and D, are 
effectively identical in accordance with von-Neumann's expected utility hypothesis, in 
which the value of the outcome of an event is multiplied by the probability of its 
occurrence. A change in the decision frame between the two groups of participants 
produced a preference reversal, with the first group preferring program A/C and the 
second group preferring B/D. Ed Zelinsky has shown that framing effects can explain 
some observed behaviors of legislators.  

Framing biases affecting investing, lending, borrowing decisions make one of the 
themes of behavioral finance. Preference reversals and other associated phenomena are of 
wider relevance within behavioural economics, as they contradict the predictions of 
rational choice, the basis of traditional economics. 

Preference Reversals over Uncertain Outcomes: Starting with studies such as 
Lichtenstein & Slovic (1971), it was discovered that subjects sometimes exhibit signs of 
preference reversals with regards to their certainty equivalents of different lotteries. 
Specifically, when eliciting certainty equivalents, subjects tend to value "p bets" (lotteries 
with a high chance of winning a low prize) lower than "$ bets" (lotteries with a small 
chance of winning a large prize). When subjects are asked which lotteries they prefer in 
direct comparison, however, they frequently prefer the "p bets" over "$ bets." Many 
studies have examined this "preference reversal," from both an experimental (e.g., Plott 
& Grether, 1979) and theoretical (e.g., Holt, 1986) standpoint, indicating that this 
behavior can be brought into accordance with neoclassical economic theory under certain 
assumptions. 

St. Petersburg paradox 

The St. Petersburg paradox relates to probability theory and decision theory. It is 
based on a particular (theoretical) lottery game (sometimes called St. Petersburg Lottery) 
that leads to a random variable with infinite expected value, i.e. infinite expected payoff, 
but would nevertheless be considered to be worth only a very small amount of money. 
The St. Petersburg paradox is a classical situation where a naïve decision theory (which 
takes only the expected value into account) would recommend a course of action that no 
(real) rational person would be willing to take. The paradox can be resolved when the 
decision model is refined via the notion of marginal utility or by taking into account the 



finite resources of the participants. Some economists claim that the paradox is resolved 
by noting that one simply cannot buy that which is not sold (and sellers would not 
produce a lottery whose expected loss to them were unacceptable). 

The paradox is named from Daniel Bernoulli's presentation of the problem and his 
solution, published in 1738 in the Commentaries of the Imperial Academy of Science of 

Saint Petersburg (Bernoulli 1738). However, the problem was invented by Daniel's 
cousin Nicolas Bernoulli who first stated it in a letter to Pierre Raymond de Montmort of 
9 September 1713.  

The Paradox 

In a game of chance, you pay a fixed fee to enter, and then a fair coin will be 
tossed repeatedly until a "tail" first appears, ending the game. The "pot" starts at 1 dollar 
and is doubled every time a "head" appears. You win whatever is in the pot after the 
game ends. Thus you win 1 dollar if a tail appears on the first toss, 2 dollars if on the 
second, 4 dollars if on the third, 8 dollars if on the fourth, etc. In short, you win 2k−1 
dollars if the coin is tossed k times until the first tail appears. 

What would be a fair price to pay for entering the game? To answer this we need 
to consider what would be the average payout: With probability 1/2, you win 1 dollar; 
with probability 1/4 you win 2 dollars; with probability 1/8 you win 4 dollars etc. The 
expected value is thus 

 

 

 

This sum diverges to infinity; on average you can expect to win an infinite amount of 
money when playing this game. So according to traditional notions, and assuming that 
the casino has infinite resources, no matter how much you pay to enter you can expect to 
come out ahead in the long run, the idea being that on the very rare occasions when a 
large payoff comes along, it will far more than repay however much money you have 
paid to play. Yet in published descriptions of the paradox, e.g. (Martin, 2004), many 
people expressed disbelief in the result. Martin quotes Ian Hacking as saying "few of us 
would pay even $25 to enter such a game" and says most commentators would agree. 

Solutions of the paradox: There are different approaches for solving the “paradox”. 

Expected utility theory : The classical resolution of the paradox involved the explicit 
introduction of a utility function, an expected utility hypothesis, and the presumption of 
diminishing marginal utility of money. In Daniel Bernoulli's own words: 



The determination of the value of an item must not be based on the price, 
but rather on the utility it yields…. There is no doubt that a gain of one 
thousand ducats is more significant to the pauper than to a rich man though 
both gain the same amount.  

Using a utility function, e.g., as suggested by Bernoulli himself, the logarithmic function 
u(x) = ln(x) (known as “log utility”), the expected utility of the lottery (for simplicity 
assuming an initial wealth of zero) becomes finite: 

 

(This particular utility function suggests that the lottery is as useful as 2 dollars.) 

Before Daniel Bernoulli published, in 1978, another Swiss mathematician, Gabriel 
Cramer, found already parts of this idea (also motivated by the St. Petersburg Paradox) in 
stating that 

the mathematicians estimate money in proportion to its quantity, and men of good 
sense in proportion to the usage that they may make of it.  

He demonstrated in a letter to Nicolas Bernoulli that a square root function describing the 
diminishing marginal benefit of gains can resolve the problem. However, unlike Daniel 
Bernoulli, he did not consider the total wealth of a person, but only the gain by the 
lottery. 

The solution by Cramer and Bernoulli, however, is not yet completely satisfying, since 
the lottery can easily be changed in a way that the paradox reappears: To this aim, we just 

need to change the game so that it gives the (even larger) payoff . Again, the game 
should be worth an infinite amount. More generally, one can find a lottery that allows for 
a variant of the St. Petersburg paradox for every unbounded utility function, as was first 
pointed out by (Menger, 1934). 

There are basically two ways of solving this generalized paradox, which is sometimes 
called the Super St. Petersburg paradox: 

• We can take into account that a casino would only offer lotteries with a finite 
expected value. Under this restriction, it has been proved that the St. Petersburg 
paradox disappears as long as the utility function is concave, which translates into 
the assumption that people are (at least for high stakes) risk averse [Compare 
(Arrow, 1974)].  

• It is possible to assume an upper bound to the utility function. This does not mean 
that the utility function needs to be constant at some point, an example would be 
u(x) = 1 − e − x.  



Recently, expected utility theory has been extended to arrive at more behavioral decision 
models. In some of these new theories, as in Cumulative Prospect Theory, the St. 
Petersburg paradox again appears in certain cases, even when the utility function is 
concave, but not if it is bounded (Rieger and Wang, 2006). 

Probability weighting : Nicolas Bernoulli himself proposed an alternative idea for 
solving the paradox. He conjectured that people will neglect unlikely events[4]. Since in 
the St. Petersburg lottery only unlikely events yield the high prizes that lead to an infinite 
expected value, this could resolve the paradox. The idea of probability weighting 
resurfaced much later in the work on prospect theory by Daniel Kahneman and Amos 
Tversky. However, their experiments indicated that, very much to the contrary, people 
tend to overweight small probability events. Therefore the proposed solution by Nicolas 
Bernoulli is nowadays not considered to be satisfactory. 

One can't buy what isn't sold: Some economists attempt to resolve the paradox by 
arguing that, even if an entity had infinite resources, the game would never be offered. If 
the lottery represents an infinite expected gain to the player, then it also represents an 
infinite expected loss to the host. No one could be observed paying to play the game 
because it would never be offered. As Paul Samuelson describes the argument: 
 

Paul will never be willing to give as much as Peter will demand for such a 
contract; and hence the indicated activity will take place at the equilibrium 
level of zero intensity. (Samuelson,1960)  

Finite St. Petersburg lotteries 

The classical St. Petersburg lottery assumes that the casino has infinite resources. This 
assumption is often criticized as unrealistic, particularly in connection with the paradox, 
which involves the reactions of ordinary people to the lottery. Of course, the resources of 
an actual casino (or any other potential backer of the lottery) are finite. More importantly, 
the expected value of the lottery only grows logarithmically with the resources of the 
casino. As a result, the expected value of the lottery, even when played against a casino 
with the largest resources realistically conceivable, is quite modest. This can be seen 
from a consideration of the finite variant of the St. Petersburg lottery: 

If the total resources of the casino are W dollars, then the maximum payoff and therefore 
the maximum number of rounds is "capped", and the expected value of the lottery 
becomes 

 

 



where L = 1 + floor(log2(W)). L is the maximum number of times the casino can play 
before it can no longer cover the next bet. The function log2(W) is the base-2 logarithm of 
W, which can be computed as log(W)/log(2) in any other base. The floor function gives 
the greatest integer less than or equal to its argument. The logarithm function becomes 
infinite as its argument becomes infinite, but does so very, very slowly. This logarithmic 
growth is the inverse behavior of exponential growth. 

 

A typical graph of average winnings over one course of a St. Petersburg Paradox lottery 
shows how occasional large payoffs lead to an overall very slow rise in average 
winnings. After 20,000 gameplays in this simulation the average winning per lottery was 
just under 8 dollars. The graph encapsulates the paradox of the lottery: The overall 
upward slope in the average winnings graph shows that average winnings tend upward to 
infinity, but the slowness of the rise in average winnings (a rise that becomes yet slower 
as gameplay progresses) indicates that a tremendously huge number of lottery plays will 
be required to reach average winnings of even modest size. 

The following table shows the expected value of the game with various potential backers 
and their bankroll: 

Backer Bankroll Expected value of lottery 

Friendly game $64 $3.50 

Millionaire $1,050,000 $10.50 

Billionaire $1,075,000,000 $15.50 



Bill Gates $51,000,000,000 (2005) $18.00 

U.S. GDP $11.7 trillion (2004) $22.00 

World GDP $40.9 trillion (2004) $23.00 

Googolnaire $10100 $166.50 

Notes: The slightly higher bankrolls for “millionaire” and “billionaire” allow a final round of play at those 
levels; otherwise for each, the maximum payout would be half as much and the expected value would be 
$0.50 less. A “googolnaire” is a hypothetical person worth a googol dollars ($10100). 

An average person might not find the lottery worth even the modest amounts in the above 
table, arguably showing that the naive decision model of the expected return causes the 
same problems as for the infinite lottery, however the possible discrepancy between 
theory and reality is far less dramatic. 

The assumption of infinite resources can produce other apparent paradoxes in economics. 
A reference may also be made to martingale (roulette system) and gambler's ruin. 

Iterated St. Petersburg lottery 

Players may assign a higher value to the game when the lottery is repeatedly played. This 
can be seen by simulating a typical series of lotteries and accumulating the returns, 
compare the illustration  

Allais paradox 

The Allais paradox, more neutrally described as the Allais problem, is a choice 
problem designed by Maurice Allais to show an inconsistency of actual observed choices 
with the predictions of expected utility theory. The problem arises when comparing 
participants' choices in two different experiments, each of which consists of a choice 
between two gambles, A and B. The payoffs for each gamble in each experiment are 
presented in the table below. 

It has been found that presented with the choice between 1A and 1B, most people 
choose 1A. Presented with the choice between 2A and 2B, most people choose 2B. This 
is inconsistent with expected utility. The point is that both gambles give the same 
outcome 89% of the time (the top row; $1 million for Gamble 1, and zero for Gamble 2), 
so, in expected utility, these equal outcomes should have no effect on the desirability of 
the gamble. If the 89% ‘common consequence’ is disregarded, both gambles offer the 
same choice; a 10% chance of getting $5 million and 1% chance of getting nothing as 



against an 11% chance of getting $1 million. (It may help to re-write the payoffs. 1A 
offers an 89% chance of winning 1 million and a 11% chance of winning 1 million, 
where the 89% chance is irrelevant. 2B offers an 89% chance of winning nothing, a 1% 
chance of winning nothing, and a 10% chance of winning 5 million, with the 89% chance 
of nothing disregarded. Hence, choice 1A and 2A should now clearly be seen as the same 
choice, and 1B and 2B as the same choice). 

Experiment 1 Experiment 2 

Gamble 1A Gamble 1B Gamble 2A Gamble 2B 

Winnings Chance Winnings Chance Winnings Chance Winnings Chance 

$1 million 89% Nothing 89% 

Nothing 1% 

Nothing 90% $1 million 100% 

$5 million 10% 

$1 million 11% 

$5 million 10% 

Allais presented his paradox as a counterexample to the independence axiom (also 
known as the "sure thing principle" of expected utility theory. Independence means that if 
an agent is indifferent between simple lotteries L1 and L2, the agent is also indifferent 
between L1 mixed with an arbitrary simple lottery L3 with probability p and L2 mixed 
with L3 with the same probability p. Violating this principle is known as the "common 
consequence" problem (or "common consequence" effect). The idea of the common 
consequence problem is that as the prize offered by L3 increases, L1 and L2 become 
consolation prizes, and the agent will modify preferences between the two lotteries so as 
to minimize risk and disappointment in case they do not win the higher prize offered by 
L3. 

Difficulties such as this gave rise to a number of alternatives to, and 
generalizations of, the theory, notably including prospect theory, developed by Daniel 
Kahneman and Amos Tversky, weighted utility (Chew) and rank-dependent expected 
utility by John Quiggin. The point of these models was to allow a wider range of 
behavior than was consistent with expected utility theory. 



Also relevant here is the framing theory by Daniel Kahneman and Amos Tversky. 
Identical items will result in different choices if presented to agents differently (i.e. a 
surgery with a 70% survival rate vs. a 30% chance of death) However, the main point 
Allais wishes to make, is that the independence axiom of expected utility theory may not 
be a necessary axiom. The independence axiom states that two identical outcomes within 
a gamble should be treated as irrelevant to the analysis of the gamble as a whole. 
However, this overlooks the notion of complementarities, the fact your choice in one part 
of a gamble may depend on the possible outcome in the other part of the gamble. In the 
above choice, 1B, there is a 1% chance of getting nothing. However, this 1% chance of 
getting nothing also carries with it a great sense of disappointment if you were to pick 
that gamble and lose, knowing you could have won with 100% certainty, if you had 
chosen 1A. This feeling of disappointment however, is contingent on the outcome in the 
other portion of the gamble (i.e. the feeling of certainty). Hence, Allais argues that it is 
not possible to evaluate portions of gambles or choices independently of the other choices 
presented, as the independence axiom requires, and thus is a poor judge of our rational 
action(1B cannot be valued independently of 1A as the independence or sure thing 
principle requires of us). We don't act irrationally when choosing 1A and 2B, rather 
expected utility theory is not robust enough to capture such "bounded rationality" choices 
that in this case arise because of complementarities. 

Mathematical Proof of Inconsistency 

Using the values above and a utility function of u(W), where W is wealth, we can 
demonstrate exactly how the paradox manifests. 

Because the typical individual prefers 1A to 1B and 2B to 2A, we can write conclude that 
the expected utilities of the preferred is greater than the expected utilities of the second 
choices, or, 

1.00U(1m) > 0.89U(1m) + 0.01U(0) + 0.1U(5m) 

0.89U(0) + 0.11U(1m) < 0.9U(0) + 0.1U(5m) 

 
We can rewrite the latter equation as, 

0.11U(1m) < 0.01U(0) + 0.1U(5m) 

1U(1m) − 0.89U(1m) < 0.01U(0) + 0.1U(5m) 

1U(1m) < 0.01U(0) + 0.1U(5m) + 0.89U(1m) 

Which contradicts the first bet which shows the player prefers the sure thing over the 
gamble. 

 



Ellsberg paradox 

The Ellsberg paradox is a paradox in decision theory and experimental economics 
in which people's choices violate the expected utility hypothesis. It is generally taken to 
be evidence for ambiguity aversion. The paradox was popularized by Daniel Ellsberg, 
although a version of it was noted considerably earlier by John Maynard Keynes (Keynes 
1921, pp.75-76, p.315, ft.2). 

The paradox: Suppose you have an urn containing 30 red balls and 60 other balls that 
are either black or yellow. You don't know how many black or yellow balls there are, but 
that the total number of black balls plus the total number of yellow balls equals 60. The 
balls are well mixed so that each individual ball is as likely to be drawn as any other. You 
are now given a choice between two gambles: 

Gamble A Gamble B 

You receive $100 if you draw a red ball You receive $100 if you draw a black ball 

Also you are given the choice between these two gambles (about a different draw from 
the same urn): 

Gamble C Gamble D 

You receive $100 if you draw a red or 
yellow ball 

You receive $100 if you draw a black or 
yellow ball 

Since the prizes are exactly the same, it follows that you will prefer Gamble A to Gamble 
B if, and only if, you believe that drawing a red ball is more likely than drawing a black 
ball (according to expected utility theory). Also, there would be no clear preference 
between the choices if you thought that a red ball was as likely as a black ball. Similarly 
it follows that you will prefer Gamble C to Gamble D if, and only if, you believe that 
drawing a red or yellow ball is more likely than drawing a black or yellow ball. If 
drawing a red ball is more likely than drawing a black ball, then drawing a red or yellow 
ball is also more likely than drawing a black or yellow ball. So, supposing you prefer 
Gamble A to Gamble B, it follows that you will also prefer Gamble C to Gamble D. And, 
supposing instead that you prefer Gamble D to Gamble C, it follows that you will also 
prefer Gamble B to Gamble A. 

When surveyed, however, most people strictly prefer Gamble A to Gamble B and 
Gamble D to Gamble C. Therefore, some assumptions of the expected utility theory are 
violated. 

Mathematical demonstration 

Mathematically, your estimated probabilities of each color ball can be represented as: R, 
Y, and B. If you strictly prefer Gamble A to Gamble B, by utility theory, it is presumed 



this preference is reflected by the expected utilities of the two gambles: specifically, it 
must be the case that 

 

where is your utility function. If (you strictly prefer $100 to 
nothing), this simplifies to: 

 

If you also strictly prefer Gamble D to Gamble C, the following inequality is similarly 
obtained: 

 

This simplifies to: 

 

This contradiction indicates that your preferences are inconsistent with expected-utility 
theory. 

Generality of the paradox 

Note that the result holds regardless of your utility function. Indeed, the amount 
of the payoff is likewise irrelevant. Whichever gamble you choose, the prize for winning 
it is the same, and the cost of losing it is the same (no cost), so ultimately, there are only 
two outcomes: you receive a specific amount of money, or you receive nothing. 
Therefore it is sufficient to assume that you prefer receiving some money to receiving 
nothing (and in fact, this assumption is not necessary -- in the mathematical treatment 
above, it was assumed U($100) > U($0), but a contradiction can still be obtained for 
U($100) < U($0) and for U($100) = U($0). 

In addition, the result holds regardless of your risk aversion. All the gambles 
involve risk. By choosing Gamble D, you have a 1 in 3 chance of receiving nothing, and 
by choosing Gamble A, you have a 2 in 3 chance of receiving nothing. If Gamble A was 
less risky than Gamble B, it would follow that Gamble C was less risky than Gamble D 
(and vice versa), so, risk is not averted in this way. 

However, because the exact chances of winning are known for Gambles A and D, 
and not known for Gambles B and C, this can be taken as evidence for some sort of 
ambiguity aversion which cannot be accounted for in expected utility theory. It has been 
demonstrated that this phenomenon occurs only when the choice set permits comparison 
of the ambiguous proposition with a less vague proposition (but not when ambiguous 
propositions are evaluated in isolation; See Fox and Tversky, 1995). 



Possible Explanations 

There have been various attempts to provide decision-theoretic explanations of 
Ellsberg's observation. Since the probabilistic information available to the decision-
maker is incomplete, these attempts sometimes focus on quantifying the non-probabilistic 
ambiguity which the decision-maker faces. That is, these alternative approaches 
sometimes suppose that the agent formulates a subjective (though not necessarily 
Bayesian) probability for possible outcomes. 

One such attempt is based on info-gap decision theory. The agent is told precise 
probabilities of some outcomes, though the practical meaning of the probability numbers 
is not entirely clear. For instance, in the gambles discussed above, the probability of a red 
ball is 30/90, which is a precise number. Nonetheless, the agent may not distinguish, 
intuitively, between this and, say, 30/91. No probability information whatsoever is 
provided regarding other outcomes, so the agent has very unclear subjective impressions 
of these probabilities. 

In light of the ambiguity in the probabilities of the outcomes, the agent is unable 
to evaluate a precise expected utility. Consequently, a choice based on maximizing the 
expected utility is also impossible. The info-gap approach supposes that the agent 
implicitly formulates info-gap models for the subjectively uncertain probabilities. The 
agent then tries to satisfice the expected utility and to maximize the robustness against 
uncertainty in the imprecise probabilities. This robust-satisficing approach can be 
developed explicitly to show that the choices of decision-makers should display precisely 
the preference reversal which Ellsberg observed (Ben-Haim, 2006, section 11.1). 

Info-gap decision theory 

Info-gap decision theory is a non-probabilistic decision theory seeking to optimize 
robustness to failure, or opportunity of windfall. This differs from classical decision 
theory, which typically maximizes the expected utility. 

In many fields, including engineering, economics, management, biological 
conservation, medicine, homeland security, and more, analysts use models and data to 
evaluate and formulate decisions. An info-gap is the disparity between what is known 
and what needs to be known in order to make a reliable and responsible decision. Info-
gaps are Knightian uncertainties: a lack of knowledge, an incompleteness of 
understanding. Info-gaps are non-probabilistic and cannot be insured against or modelled 
probabilistically. A common info-gap, though not the only kind, is uncertainty in the 
shape of a probability distribution. Another common info-gap is uncertainty in the 
functional form of a property of the system, such as friction force in engineering, or the 
Phillips curve in economics. 

Info-gap commonly focuses on making decisions in such a way that unacceptably 
poor outcomes are avoided. Its focus on the worst possible outcome shares many features 
with minimax decision theory. 



Info-gap models: Info-gaps are quantified by info-gap models of uncertainty. An info-
gap model is an unbounded family of nested sets all sharing a common structure. A 
frequently encountered example is a family of nested ellipsoids all having the same 
shape. The structure of the sets in an info-gap model derives from the information about 
the uncertainty. In general terms, the structure of an info-gap model of uncertainty is 
chosen to define the smallest or strictest family of sets whose elements are consistent 
with the prior information. 

A common example of an info-gap model is the fractional error model. The best  

estimate of an uncertain function is , but the fractional error of this estimate 
is unknown. The following unbounded family of nested sets of functions is a fractional-
error info-gap model: 

 

At any horizon of uncertainty α, the set contains all functions whose 

fractional deviation from is no greater than α. However, the horizon of uncertainty 
is unknown, so the info-gap model is an unbounded family of sets, and there is no worst 
case or greatest deviation. 

There are many other types of info-gap models of uncertainty. All info-gap models obey 
two basic axioms: 

• Nesting. The info-gap model is nested if implies that:  

 

• Contraction. The info-gap model is a singleton set containing its center 
point:  

 

The nesting axiom imposes the property of "clustering" which is characteristic of info-
gap uncertainty. Furthermore, the nesting axiom implies that the uncertainty sets 

become more inclusive as α grows, thus endowing α with its meaning as an 
horizon of uncertainty. The contraction axiom implies that, at horizon of uncertainty zero, 

the estimate is correct. 

Robustness and opportuneness: Uncertainty may be either pernicious or propitious. 
That is, uncertain variations may be either adverse or favorable. Adversity entails the 
possibility of failure, while favorability is the opportunity for sweeping success. Info-gap 
decision theory is based on quantifying these two aspects of uncertainty, and choosing an 
action which addresses one or the other or both of them simultaneously. The pernicious 



and propitious aspects of uncertainty are quantified by two "immunity functions": the 
robustness function expresses the immunity to failure, while the opportuneness function 
expresses the immunity to windfall gain. 

The robustness function expresses the greatest level of uncertainty at which 
failure cannot occur; the opportuneness function is the least level of uncertainty which 
entails the possibility of sweeping success. The robustness and opportuneness functions 
address, respectively, the pernicious and propitious facets of uncertainty. 

Let q be a decision vector of parameters such as design variables, time of 
initiation, model parameters or operational options. We can verbally express the 
robustness and opportuneness functions as the maximum or minimum of a set of values 
of the uncertainty parameter α of an info-gap model: 

 (robustness) (1) 

 (opportuneness) (2) 

We can "read" eq. (1) as follows. The robustness of decision vector q is the greatest 
value of the horizon of uncertainty α for which specified minimal requirements are 

always satisfied. expresses robustness — the degree of resistance to uncertainty 

and immunity against failure — so a large value of is desirable. Eq. (2) states that 

the opportuneness is the least level of uncertainty α which must be tolerated in 

order to enable the possibility of sweeping success as a result of decisions q. is the 

immunity against windfall reward, so a small value of is desirable. A small value of 

reflects the opportune situation that great reward is possible even in the presence of 

little ambient uncertainty. The immunity functions and are complementary 

and are defined in an anti-symmetric sense. Thus "bigger is better" for while "big is 

bad" for . The immunity functions — robustness and opportuneness — are the 
basic decision functions in info-gap decision theory. 

The robustness function involves a maximization, but not of the performance or 
outcome of the decision. The greatest tolerable uncertainty is found at which decision q 
satisfices the performance at a critical survival-level. One may select an action q 

according to its robustness , whereby the robustness function underlies a satisficing 
decision algorithm which maximizes the immunity to pernicious uncertainty. 

The opportuneness function in eq. (2) involves a minimization, however not, as 
might be expected, of the damage which can accrue from unknown adverse events. The 
least horizon of uncertainty is sought at which decision q enables (but does not 



necessarily guarantee) large windfall gain. Unlike the robustness function, the 

opportuneness function does not satisfice, it "windfalls". When is used to choose an 
action q, one is "windfalling" by optimizing the opportunity from propitious uncertainty 
in an attempt to enable highly ambitious goals or rewards. 

Given a scalar reward function R(q,u), depending on the decision vector q and the 
info-gap-uncertain function u, the minimal requirement in eq. (1) is that the reward R(q,u) 
be no less than a critical value rc. Likewise, the sweeping success in eq. (2) is attainment 
of a "wildest dream" level of reward rw which is much greater than rc. Usually neither of 
these threshold values, rc and rw, is chosen irrevocably before performing the decision 
analysis. Rather, these parameters enable the decision maker to explore a range of 
options. In any case the windfall reward rw is greater, usually much greater, than the 
critical reward rc: 

rw > rc  

The robustness and opportuneness functions of eqs. (1) and (2) can now be expressed 
more explicitly: 

 

(3) 

 

(4) 

is the greatest level of uncertainty consistent with guaranteed reward no less 

than the critical reward rc, while is the least level of uncertainty which must be 
accepted in order to facilitate (but not guarantee) windfall as great as rw. The 
complementary or anti-symmetric structure of the immunity functions is evident from 
eqs. (3) and (4). 

These definitions can be modified to handle multi-criterion reward functions. 

The robustness function generates robust-satisficing preferences on the options. A 

decision maker will usually prefer a decision option over an alternative if the 

robustness of is greater than the robustness of at the same value of critical reward rc. 
That is: 

     if      (5) 



Let  be the set of all available or feasible decision vectors q. A robust-satisficing 

decision is one which maximizes the robustness on the set of available q-vectors and 
satisfices the performance at the critical level rc: 

 

Usually, though not invariably, the robust-satisficing action depends on the 
critical reward rc. 

The opportuneness function generates opportune-windfalling preferences on the 
options. A decision maker who chooses to focus on windfall opportunity will prefer a 

decision q over an alternative if q is more opportune than at the same level of reward 
rw. Formally: 

     if       (6) 

The opportune-windfalling decision, , minimizes the opportuneness function on 
the set of available decisions: 

 

The two preference rankings, eqs. (5) and (6), as well as the corresponding the optimal 

decisions and , may be different. 

The robustness and opportuneness functions have many properties which are 
important for decision analysis. Robustness and opportuneness both trade-off against 
aspiration for outcome: robustness and opportuneness deteriorate as the decision maker's 
aspirations increase. Robustness is zero for model-best anticipated outcomes. Robustness 
curves of alternative decisions may cross, implying reversal of preference depending on 
aspiration. Robustness may be either sympathetic or antagonistic to opportuneness: a 
change in decision which enhances robustness may either enhance or diminish 
opportuneness. Various theorems have also been proven which show how the probability 
of success is enhanced by enhancing the info-gap robustness, without of course knowing 
the underlying probability distribution. 

 
 

(Compiled from Wikipedia.org) 

 


