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Introduction: The Gielis superformula  
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describes almost any closed curve in terms of the deformed circle (or ellipse), ( ),g θ  and 
another function, ( ),f θ  and their parameters (Gielis, 2003; Gielis and Gerats, 2004). The 
function ( )f θ  may be considered as a modifier of the Gielis function, ( )g θ .  
 
Estimation of Gielis Parameters: For a scientific purpose, Gielis parameters need to be 
estimated from empirical data. Presently, we are concerned with the possibilities of the same. 
Let the n true points be [ ( , ); 1,2,..., ]i i iz x y i n= = , of which the corresponding observed values 
are ( , )i iz x y′ ′ ′= , possibly with errors of measurement and displacement of origin by ( , )x yc c , 

unknown to us. Let  ( , )x yc c� �  be the approximate or assumed values of ( , ).x yc c  Let us denote 

by ( , ) ( , ).i i i i x i yz x y x c y c′ ′= = − −� � � ��  From these values we obtain 2 2( )i i ir x y= +� � � . We also obtain 
1tan ( / )i i iy xθ −=� � � . On the other hand, we obtain 1 2 3ˆ ( , , , , , , ). ( ),i ir g a b m n n n fθ θ= �� �� � � � �  where (.)g  is 

the Gielis super-formula defined in (4) and ( )f θ  is variously defined.  The wavy bar on the 
arguments of (.)g  and (.)f  indicates that all parameters have taken on some assumed values, 
which may not be the correct values. The deviation of assumed values of parameters from their 

true values gives rise to ˆ( )i i id abs r r= −�  and consequently 2 2
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S d
=

= ≥�  Only if the assumed 

values of parameters are the true values, 2S  can be zero, but smaller it is, closer are the 
assumed values of the parameters from their true values (assuming empirical uniqueness of the 
parameters to a given set of data).  Thus we have to find the values of Gielis parameters in (.)g  
and (.)f  such that 2S  is minimum. 
 

Minimization of 2S  poses formidable problems due to two reasons. First, the Gielis 
parameters are possibly not unique to data suggesting that minima (local as well as global) are 
located in the valleys. The three parameters, 1 2,n n  and 3n  of the deformed circle, ( ),g θ  interact 
with each other even if we assume that the parameters of the modifying function, ( ),f θ  do not 
influence them. However, that is not the case. As a matter of fact, all of them interact with each 
other. A large number of experiments carried out by the author make the basis of this view. 
Secondly, the parameters span a highly nonlinear surface of 2S , which has innumerably many 
local minima (Mishra, 2006). 
----------------------------------------------------------------------------------------------------------------- 
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 As it is well known, most of the nonlinear optimization procedures that were developed 
in the 1960’s or before are extremely prone to be caught in the local optima if the surface to be 
optimized is substantially irregular, ridged and multi-modal. In the due course, researchers in 
the field of operations research turned to learning from nature and imitating the process in 
which natural processes attain a minimum. Understanding the process of adaptation of living 
beings to their environment for a survival led to development of the ‘genetic algorithm’ 
(Holland, 1975) and the optimization method based on adaptation (Goldberg, 1989; Wright, 
1991). This method mimics the process of survival of the fittest. A few other methods such as 
the Particle Swarm methods (Eberhart and Kennedy, 1995; see Parsopoulos and Vrahatis, 
2002) were motivated by the behaviour of the living beings.  On the other side, researchers 
learned from physics – the process of annealing in metallurgy (Kirkpatrick et al., 1983) and the 
method of ‘simulated annealing’ was developed.  This method was improved (Tsallis and 
Stariolo, 1995) by the replacement of the Gaussian (Boltzmann-Gibbs) visiting distribution 
(used by CSA) and the Cauchy-Lorentz visiting distribution (used by the Fast Simulated 
Annealing – FSA – method) by the Tsallis visiting distribution, making the earlier methods 
(CSA and FSA)  as special cases.  
 
The Simulation Experiments: We have experimented with nine different models. All these 
models are instances of a deformed circle, (.),g  modified by different modifier functions, (.).f  
Three typical instances of (.)g  have been chosen. The parameters of (.)g  are given in table 
A.1. Three typical modifier functions are chosen, as given below. The chosen values of n4 and 
n5 are also given in table-A.1. 
 

1( )f θ = 2 2 0.5
4 5[ (3cos( ) cos(3 )) (3sin( ) sin(3 )) ]r n t t n t t= − + − : (Nephroid)     … (2) 

2 ( )f θ = r = n4 + n5 cos(t):  (Limaçon)                           … (3) 

3( )f θ = r = n4 - n5 cos(t) + abs(cos(t))3                        …(4) 
  

In all the three modifier functions, n4 and n5 are parameters and 0 2 .t π≤ ≤  
 
In case of each model, hundred uniformly distributed random points have been 

generated with the parameters specified in the relevant (.)g  and (.).f  The Classical simulated 
annealing (CSA of Kirkpatrick et al., 1983) and the Generalized simulated annealing (GSA of 
Tsallis and Stariolo, 1995) methods of optimization have been repetitively applied to estimate 
the parameters. The CSA method requires the bounds (the lower and the upper limits; LL and 
UL) on the parameters to be specified. For all the nine models we have used the identical set of 
bounds, specified in table-A.1. However, GSA does not require such bounds. The jointly 
estimated parameters of (.)g  and (.)f  by both methods are presented in table-A.1. Their 
graphs are presented in Fig.A.1 and Fig.A.2 ( , 1, 2,...,3)ijM i j = . The red points are those 
generated by the true parameters, the blue ones are generated by using the CSA-estimated 
parameters and the green ones are those generated by the GSA-estimated parameters. For each 
model, the estimated (blue as well as green) points are superimposed on the generated (red) 
points to facilitate a visual assessment of the quality of fit, which is quantitatively represented 
by the value of S2. For GSA we have used the program developed by Mundim (1996) as the 
central subprogram under our main program.   
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The Findings: The CSA method of optimization performs very well in fitting the Gielis curves 
to data. It performs better than the GSA. The GSA has almost always been caught in the sub-
optimal traps as indicated by the relatively large values of S2  and bad fit presented in the 
figures. In general, increase in the number of iterations to obtain GSA estimates improves 
performance greatly. When max number of iterations (NStopMax) was 1000, we get inferior 
estimates (see rows G in table A.1 in the appendix and associated plots in Fig-A.1). With 
NstopMax =10000 the estimates are much better and often close to CSA estimates (see rows H 
in table A.1 in the appendix and associated plots in Fig. A.2). Save in an isolated case of 
Model-21, CSA estimates give better fit (smaller S2) than the GSA estimates even when 
NStopMax is 10000. 
 
 Generalized Simulated Annealing program converges much faster. It does not require 
limits on the decision variables either. The initial guesses of the decision variables may simply 
be generated randomly, lying between -0.5 to +0.5 or so.  However, its disadvantage is that it 
does not ensure a better result vis-à-vis the Classical Simulated Annealing method. Could we 
increase NStopMax to 100,000 for the GSA? Possibly, it could do better than CSA. But, in that 
case it is as slow as the CSA.  
 
Observations: There could be several possible reasons for a relatively poor performance of the 
GSA vis-à-vis the CSA. First, there could be some bugs in the codes written by the present 
author (which integrates Mundim’s program as a procedure or subprogram for function 
minimization) due to which Mundim’s program fails to work properly. Secondly, it might be 
so that Mundim’s program itself has some bug or limitation. Thirdly, granted that codes are all 
right, we have specified the parameters wrongly. Lastly, GSA algorithm has some serious 
limitations. 
 

In order to investigate into the possible reasons mentioned above, we have tested 
Mundim’s program as it is. His program needs a subroutine FUNCT(X, F) to be provided by the 
user. We have used the following subroutine (Levy function No. 5). In the gsa.in  file (that 
gives inputs to the program) we have specified qA = 1.5, qT=1.5, qV=1.5, NStopMax = 1000, 
To = 1.0E-00 and NDimension = 2.   
 
        SUBROUTINE FUNCT(X,F) 
        PARAMETER (MaxDim=500) 
        IMPLICIT DOUBLE PRECISION (A-H, O-Z) 
        DIMENSION X(MaxDim) 
C     Levy # 5 (Levy et al. 1981) ------------------------------------ 
       f1=0.0d+00 
       f2=0.0d+00 
       do i=1,5 
       f1=f1+(i*dcos((i-1)*x(1)+i)) 
       f2=f2+(i*dcos((i+1)*x(2)+i)) 
       enddo 
       f3=(x(1)+1.42513d+00)**2 
       f4=(x(2)+0.80032d+00)**2 
       f=(f1*f2) + (f3+f4)  
       RETURN 
       END 
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Plot of Levy # 5 within the cube [-2, 2]2 

With [ 10,10]; 1,2ix i∈ − =  this function has about 760 
local minima and one global minimum with function 
value f (x**) = –176.1375, at x** = (–1.3068, –1.4248) 
as mentioned by Parsopoulos and Vrahatis, 2002. The 
large number of local minimizers makes it difficult for 
any method to locate the global minimum. That is why 
this function is used as a test problem. Mundim’s 
program gives  f (x*) = -176.137392 for the decision 
variables x* = (1.30707675, 1.42458832) run with  the 
initial (arbitrary) value x0 = (2, 3). 
  

 
However, when Mundim’s program is run with x0 = (4, 4) we get f (x* ) = -103.608526 

at x* = (4.9679732, 4.85541621), which is clearly a local minimum.  When run with x0 = (-1, 
5), Mundim’s program gives f (x* ) = -144.524898 at x* = (-1.3063705, 4.85553323), which, 
again, a local minimum. Thus, it indicates that, perhaps,  Mundim’s program works well only 
if x0 (the initial guess) is close to the optimal x, that is, x**. It appears that this is a serious 
limitation of Mundim’s program. 

 
We test Mundim’s program with Levy function No. 8. This function has three decision 

variables; x = (x1, x2, x3).  The subroutine FUNCT(X, F) is given below. In the gsa.in  file (that 
provides inputs to the program) we have specified qA = 1.5, qT=1.5, qV=1.5, NStopMax = 
1000, To = 1.0E-00 and NDimension = 3.   

 
          SUBROUTINE FUNCT(X,F) 
          PARAMETER (MaxDim=500) 
          IMPLICIT DOUBLE PRECISION (A-H, O-Z) 
          DIMENSION X(MaxDim),Y(MAXDIM) 
C       LEVY # 8 FUNCTION ---------------------------------------------- 
          PI=4.D+00*DATAN(1.D+00) 
 
          DO I=1,3 
          Y(I)=1.D+00+(X(I)-1.D+00)/4.D+00 
          END DO 
          F1=DSIN(PI*Y(1))**2 
          F3=(Y(3)-1.D+00)**2 
          F2=0.D+00 
          DO I=1,2 
          F2=F2+((Y(I)-1.D+00)**2)*(1.D+00+10.D+00*(DSIN(PI*Y(I+1)))**2) 
          ENDDO 
          F=F1+F2+F3 
          RETURN 
          END 
 

Levy’s function No. 8 for xi 
�

[–10, 10] ; i = 1, 2, 3   has one global minimum at the 
point x** = (1, 1, 1) with function value f(x**) = 0, and, approximately, 125 local minima 
(Parsopoulos and Vrahatis, 2002). When run with the initial guess x0 = (-1, 2, 1), Mundim’s 
program gives us f(x*) = 1.86677499E-006 and x* = (1.00100189, 1.00086019, 1.00426821), 
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which is very close to the global optimal value. When run with initial guess x0 = (2, -2, 3), it 
gives us the values : f(x*) = 2.28761655E-006 and x* = (1.00141443, 1.00254639, 
0.997106632), which is again very close to the global optimal value. Run with x0 = (2, 2, 3), we 
get f(x*) = 2.29972367E-006 and x* = (0.99966183, 1.00259893, 0.994633726), which is very 
close to the global minimum. However, when run with x0 = (5, 5, 5), we get f(x*) = 2.88283762 
and x* = (4.60405911, 4.95069414, 4.95861021), which is a local optimum, far away from the 
global optimum.  
 
 These two examples clearly suggest that Mundim’s codes have some problems in 
searching the global optimum with an arbitrary starting point. Since, in practice, it is difficult 
to guess correct initial values (more so when there are many decision variables) to run the 
program, Mundim’s codes are of limited value. This may be the reason why GSA has almost 
always performed poorly vis-à-vis CSA in our case (of fitting the Gielis curves).  
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Appendix 
 

Table-A.1. True & Estimated Gielis Parameters (Modified Curves) with Limits on them 
 cx cy a b n1 n2 n3 m n4 n5 S2  

0 0 1 1 0.6 2 3 3 3 2 0 T 
-15 -15 0 0 -80 -80 -80 0 -10 -10 LL  
15 15 50 50 80 80 80 80 10 10 UL  

0.010 -0.082 0.763 27.987 3.859 2.677 -0.089 6.022 5.898 3.918 0.435 C 
0.177 -0.397 4.297 3.451 2.724 9.665 -0.204 2.983 5.096 3.703 20.884 G 

M 
 # 
11 

-1.589 -0.150 1.596 1.019 0.577 0.610 3.639 -1.987 2.681 1.256 1.566 H 
0 0 1 1 2 2 6 5 3 2 0 T 

-15 -15 0 0 -80 -80 -80 0 -10 -10 LL  
15 15 50 50 80 80 80 80 10 10 UL  

-0.005 0.088 0.568 0.831 9.809 3.550 -0.290 10.024 4.714 3.155 0.952 C 
0.353 -0.554 8.315 -0.503 3.222 4.710 -0.356 -2.516 3.675 2.605 16.633 G 

M 
 # 
12 

2.115 0.642 -0.050 -0.048 0.632 -1.245 -0.380 -1.072 0.769 0.242 8.535 H 
0 0 1 1 8 4 -4 6 3 2 0 T 

-15 -15 0 0 -80 -80 -80 0 -10 -10 LL  
15 15 50 50 80 80 80 80 10 10 UL  

0.000 0.000 0.208 2.830 20.109 9.940 -10.062 6.000 8.484 5.652 0.001 C 
1.066 0.002 0.858 -0.304 3.070 0.558 -10.754 2.013 1.286 1.560 50.009 G 

M 
 # 
13 

-0.003 -0.002 -2.660 -1.398 -0.282 0.675 0.314 -3.004 0.759 0.497 1.139 H 
0 0 1 1 0.6 2 3 3 3 2 0 T 

-15 -15 0 0 -80 -80 -80 0 -10 -10 LL  
15 15 50 50 80 80 80 80 10 10 UL  

0.040 0.015 0.951 0.472 -63.643 -4.760 19.382 6.077 3.091 2.029 0.264 C 
1.157 -0.474 1.750 -0.593 0.300 1.039 0.207 -0.926 1.439 0.739 1.139 G 

M 
 # 
21 

3.223 0.069 -0.737 4.040 4.531 2.391 0.424 -4.100 3.807 -1.639 0.140 H 
0 0 1 1 2 2 6 5 3 2 0 T 

-15 -15 0 0 -80 -80 -80 0 -10 -10 LL  
15 15 50 50 80 80 80 80 10 10 UL  

-0.063 0.049 0.410 2.496 13.073 3.808 -0.537 9.940 3.914 2.707 0.315 C 
0.358 0.022 26.318 19.861 2.312 -0.045 0.207 39.566 4.312 2.308 8.821 G 

M 
 # 
22 

0.081 -0.014 -1.512 -1.405 -1.209 0.682 1.206 5.024 3.604 2.286 1.078 H 
0 0 1 1 8 4 -4 6 3 2 0 T 

-15 -15 0 0 -80 -80 -80 0 -10 -10 LL  
15 15 50 50 80 80 80 80 10 10 UL  

0.000 0.000 43.724 10.289 -58.308 42.069 29.224 6.000 9.624 6.415 0.005 C 
0.252 -0.062 23.221 19.907 2.266 -0.162 3.957 41.494 3.272 1.905 31.973 G 

M 
 # 
23 

-0.002 0.017 0.126 0.089 2.240 -1.557 -1.105 -2.987 1.354 0.901 0.158 H 
0 0 1 1 0.6 2 3 3 3 2 0 T 

-15 -15 0 0 -80 -80 -80 0 -10 -10 LL  
15 15 50 50 80 80 80 80 10 10 UL  

-0.982 -0.039 0.949 5.796 15.318 4.294 1.637 5.959 3.381 1.294 0.504 C 
-3.514 -0.069 20.062 20.115 6.366 0.900 0.865 40.511 2.509 -0.483 3.033 G 

M 
 # 
31 

-3.512 -0.042 -1.234 1.252 3.029 3.388 2.509 -3.977 2.847 -0.528 0.550 H 
0 0 1 1 2 2 6 5 3 2 0 T 

-15 -15 0 0 -80 -80 -80 0 -10 -10 LL  
15 15 50 50 80 80 80 80 10 10 UL  

1.217 0.027 13.680 50.000 50.370 11.819 10.236 8.052 7.876 2.254 2.371 C 
-3.858 -0.119 24.807 25.118 -4.337 -0.057 1.849 42.345 3.419 -1.203 9.177 G 

M 
 # 
32 
  

-1.377 -0.045 -1.577 2.403 1.546 1.275 1.174 4.011 2.343 0.668 3.740 H 
Table continued to next page 
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Table- A.1. as a continuation --  from  the earlier  page 

 cx cy a b n1 n2 n3 m n4 n5 S2  

0 0 1 1 8 4 -4 6 3 2 0 T 
-15 -15 0 0 -80 -80 -80 0 -10 -10 LL  
15 15 50 50 80 80 80 80 10 10 UL  

0.000 0.000 0.004 1.003 -78.492 -21.839 39.256 6.000 2.995 1.996 0.006 C 
-1.672 0.096 26.101 26.161 -1.528 0.158 0.061 39.434 2.059 0.271 25.234 G 

M 
 # 
33 

-0.064 -0.075 1.180 1.077 -0.313 1.346 1.038 3.017 1.840 1.163 3.884 H 
M=Model;  LL=Lower Limits;  UL=Upper Limits;  T=True Parameters;  C and G are Estimated Parameters : C = SA (Classical SA)  
G =GSA (Generalized SA)  with 1000 iterations;  H =GSA (Generalized SA)  with 10000  iterations   

 
 
 
 

Figures.A.1. (Plots of Generated, CSA-estimated and GSA-estimated points) 
[For GSA 1000 iterations are used] 
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Figures-A.2. (Plots of Generated, CSA-estimated and GSA-estimated points) 
[For GSA 10,000  iterations are used] 
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