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Introduction: Nature presents abundant examples of closed curves that may be considered as 
some sort of deformed ellipses. Gielis (2003) invented a superformula to parameterize such 
shapes. 
 

The classical formula of ellipse is given as: 
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that may, without any loss to generality, be expressed as:  
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Thus, we have the formula 
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Gielis found that almost any (closed) curve can be described in terms of ( ),f θ  which is 

any defined function of θ , and the parameters ( 1,2,3, , , ja b m n = ) in (4) and called it a 
superformula.   
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Let us look at the formulas (1) to (4) above a little differently. The parameters a and 
b relate to maximal length (along x axis) and width (along y axis). When x and y are divided 
by a and b respectively, the length and the width are unitized such that all the points lie on or 
inside the unit circle. If the parameters satisfy the relationship 1 2 3( ) 1n n n= = ≥ , we may view 
(4) above as some sort of ‘ball’ with a well-defined Minkowski distance (of a point from the 
origin). The Minkowski distance is measured as  

1/

; 1
pp p

d u v p� �= + ≥
� �

       … (5) 

Note that this distance satisfies the triangle inequality condition for any real 1p ≥ , (integer or 
non-integer). For u and v  within the unit ball, p larger than unity would deflate them and 
p <1 would inflate them (violating the ∆  inequality). The exponent (1/ )p  on the square 

bracket operating on the sum of rescaled u and v  (within the square bracket) would have the 
role opposite to p . However, in the formula 

1/
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      … (6) 

scaling of  u and v  within the square bracket are not uniform, nor the rescaling of their sum by 
the exponent on the square bracket has any particular relation with them. They stretch and 
squeeze the ball in different proportions in different directions. 
 

Thus, the matters are entirely different when ,p q or w  assume a negative or a 
fractional value. Then d is no longer a measure of distance in the sense described above. 
Gielis’ formula allows for such negative or fractional values of ,p q or w .  
 
Examples in Nature: Among the plant leaves we find different shapes - linear, lanceolate, 
elliptic, oblong, ovate, abovate, orbicular, cordate, reniform, sagittate, hastate, auricled, etc. 
Leaves exhibit different patterns in their margin – entire, undulate, dentate, serrate, crenate, 
pinnately lobed and so on. Leaf tips may be acuminate, acute, obtuse, truncate, retuse, 
cuspidate, mucronate, and may others. These particulars characterize plant leaves and the 
plants in turn. Very often, therefore, plant leaves are qualitatively described. However, Gielis 
holds that it is possible to describe these shapes in terms of parameters  ( 1,2,3, , , ja b m n = ). 
 
Measurements: The figure (for instance, a plant leaf) may be placed on a graph paper and 
traced to give a 2d graph, which may be converted into data points ( , ); 1, 2,..., .i i iz x y i n= =  In 
practice, these measurements are such that the entire leaf is traced in 4 quadrants, with the 
centroid placed (approximately) on the origin (0,0)  of the graph. Since it is almost impossible 
in practice to exactly place the centroid of a leaf on the correct origin, (0,0) on a graph paper, 
we assume that the origin is wrongly located at ( , ).x yc c  Accordingly, every point on the trace 

of the leaf is the distance, r′ , measured with the origin ( , )x yc c  on the graph, with the 

coordinates ( , ) ( , )x yx y x c y c′ ′ = + + . After obtaining such data, what remains is to fit the Gielis 

superformula in the data and obtain the estimates of parameters ( 1,2,3
ˆˆ ˆ ˆ, , , ja b m n = ) . This paper is 

an attempt to explore this possibility. 
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The First Step to Estimation of Gielis Parameters: The first and most important task in 
estimation of the Gielis parameters from such empirical data (with displaced origin) is to 
estimate the shift parameters, ( , )x yc c , so that ( , ) ( , )x yx y x c y c= − −  can be obtained as 
correctly as possible. We draw the practically smallest possible rectangle such that the trace of 
the figure is inscribed within the said rectangle, we may obtain the first estimate of ( , )x yc c  
along with the limits within which each shift parameter would lie. That is: 

;x x x y y yL c H L c H≤ ≤ ≤ ≤ . We can also obtain approximate values of a  = half of the length 
and b =half of the width of the rectangle, and the limits within which they lie such that  

; .a a b bL a H L b H≤ ≤ ≤ ≤  Any other method may also be used to guess them. 

 
 
Having obtained the approximate values of the first four parameters, ( , )x yc c  and ( , )a b , 

searching for the values of the rest four parameters 1 2 3( , , , )m n n n  needs a guess work and a 
non-linear search algorithm. 

 
Estimation of Gielis Parameters: Let the n true points be [ ( , ); 1,2,..., ]i i iz x y i n= = , of which 
the corresponding observed values are ( , )i iz x y′ ′ ′= , possibly with errors of measurement and 
displacement of origin by ( , )x yc c , unknown to us. Let  ( , )x yc c� �  be the approximate or assumed 

values of ( , ).x yc c  Let us denote by ( , ) ( , ).i i i i x i yz x y x c y c′ ′= = − −� � � ��  From these values we obtain 
2 2( )i i ir x y= +� � � . We also obtain 1tan ( / )i i iy xθ −=� � � . On the other hand, we obtain 

1 2 3ˆ ( , , , , , , ),i ir g a b m n n nθ= �� � � � � �  where (.)g  is the Gielis superformula defined in (4). Presently, we 
assume ( ) 1.f θ =  The wavy bar on the arguments of (.)g  indicates that all parameters have 
taken on some assumed values, which may not be the correct values. The deviation of assumed 
values of parameters from their true values gives rise to ˆ( )i i id abs r r= −�  and consequently 

2 2

1

0.
n

i
i

S d
=

= ≥  Only if the assumed values of parameters are the true values, 2S  can be zero, 

but smaller it is, closer are the assumed values of the parameters from their true values 
(assuming empirical uniqueness of the parameters to a given set of data).  Thus we have to 
choose the values of Gielis parameters in (.)g  such that 2S  is minimum. 
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 Minimization of 2S  poses formidable problems due to two reasons. First, the Gielis 
parameters are possibly not unique to data. The trio of 1 2,n n  and 3n  is possibly not 
independent of each other. In econometric literature, the multicollinearity problem presents an 
instance of a lack of such uniqueness. This fact apart, the parameters span a highly nonlinear 
surface of 2S , which has innumerably many local minima. The author has observed that a 
highly adaptive direct search method such as the Nelder-Mead algorithm (Nelder and Mead, 
1964; Kuester and Mize, 1973) is often caught into local optima while finding the optimal 
values of the Gielis parameters. Multiple starting points sometimes succeed, but often fail to 
give a desirable result.  
 
The Genetic Algorithm for Optimization: While faced with the problem of optimization of a 
multi-parameter nonlinear function with innumerably many local optima, a choice of the 
genetic algorithm to find the best possible global optimum is perhaps appropriate. With this 
point, we have applied the genetic algorithm (Holland, 1975; Goldberg, 1989; Write, 1991) to 
fit the Gielis superformula to the data experimentally generated by simulation. 
 
The Simulation Experiments: We have experimented with six different models. The 
parameters by which data have been generated are presented in tables A.1 and A.2 in the 
appendix. The graphical view of the shapes may be appreciated by looking at the Fig.1 through 
Fig.18. The red points are those generated by the true parameters while the blue ones are 
generated by using the estimated parameters. 
   

For every model (1 through 6) three estimates have been obtained. The considerations for 
the alternative estimates are as follows: 
 

1. By observing the graph plot of the data (100 points for each model) generated by the 
true parameters, we may guess on the ranges of the first four parameters, , , ,x yc c a b  
rather easily.  

2. The value of m  may be guessed more or less correctly, within a narrow interval, by 
observing the graph plot. 

3. The values of exponential parameters, 1 2 3, ,n n n  are hard to guess. However, multi-petal 
shapes such as the graphs of models 1, 2 and 5 suggest that 2n  or 3n  may be negative.  

4. On this basis we have made a three-fold classification: (a) Most Informed – when the 
signs of exponential parameters are known and their range is narrow; (b) Less 
Informed – when the sign of the exponential parameters are known but the range is 
quite wide; and (c) Least Informed – when the signs of the parameters are not known 
and the range within which they may lie is quite wide. 

 
Accordingly, we have arbitrarily assumed the ranges in case of each parameter and 

searched for the least value of 2S . In each case, we have run the genetic algorithm program (in 
FORTRAN) 30 times. It may be noted that the genetic algorithm does have a great capability of 
adaptation, but it may also be caught in a local optimum. After all, it is a random search 
algorithm, although much better algorithm than the usual ones. The least value of 2S  in 30 
runs is chosen as the best point, nearest to the optimum. Of course, 100 runs might have 
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produced still better results. But our purpose in this paper is not to obtain the best results; we 
aim at showing that the Gielis curves may be fitted to data successfully by using the genetic 
algorithms.    
 
The Findings: The details of the findings (estimated parameters, assumed ranges, extent of 
fitness or 2S , etc) are presented in tables A.1 and A.2 in the appendix. The points generated by 
true parameters are red-coloured. For each case, 1000 points are generated by the estimated 
parameters. These points are blue-coloured. A visual observation suggests that in most cases 
the true shapes have been satisfactorily reproduced by the estimated parameters. 
 
 Table-1 presents the fitness in view of the information used in determining the ranges 
in which the parameters are likely to lie. We observe that most informed guesses on ranges 
produce better fits. 
 

Table-1. Level of Information about the Rage of Parameters on Extent of Fitness 
Information Level Model-1 Model-2 Model-3 Model-4 Model-5 Model-6 
Most Informed 0.347 0.004 0.015 0.016 0.025 0.000 

Less Informed 0.618 0.006 0.025 0.105 0.080 0.000 

Least Informed 3.640 0.015 0.027 0.114 0.496 0.006 

Figures in the table are 2S  indicating the extent of fit. For details see tables A.1 and A.2 in the Appendix. 
 
 A perusal of the magnitudes of exponential parameters ( 1 2 3, ,n n n ) suggests that very 
often they deviate significantly from the true parameters but they may have a tendency to keep 
some proportionate relations among themselves. This tendency indicates the lack of empirical 
uniqueness of the parameters of the Gielis superformula (Mishra, 2006). For model-6 in 
particular, the three estimates give vary small and practically indistinguishable 2S , but 
variations in the estimated parameters are so large. On the basis of fitness (alone) one cannot 
say whether the one estimate (of parameters) is more reliable than the others. Thus, the 
exponential parameters intermingle with each other. However, this is only a conjecture of the 
author, albeit supported by enough experimental evidences. This issue deserves further 

investigation. A binomial expansion of ( )u v
γα β+  may indicate how the exponents interact 

among themselves leading to their empirical indeterminacy. 
 
Modification of Deformed Ellipse by Other Functions: The deformed ellipse ( ( )g θ  in eqn. 
(4)) may be modified by another function, ( ).f θ  Such a modification may alter the shape of 
either function in a very interesting manner. For example, a triangular shape of model-4 if 
modified by ( ) | cos( ) |f wθ θ= may give a shape as in model-12 (see Fig-24 in the appendix). 
 
 We have conducted some experiments with such modifications of the deformed 
ellipses. Models 7 , 8 and  9 are the modified versions of models 2, 3 and 5 respectively. The 
modifier is the logarithmic spiral function, 4 5 4 5( ) .exp( ) ; 1.1, 0.1.f n n n nθ θ= = =  The 
estimated parameters and other details are given in table A.3. Models 10 and 11 are instances 
of two different types of ( )g θ  modified by 4 5( ) . | cos( ) |f n nθ θ= ; 4 51, 2.5n n= = . Lastly, the 



 6

model-12 is the modified model-5 where the modifier is 4 5( ) . | cos( ) |f n nθ θ= ; 4 51, 2.5n n= = . 
The estimated parameters and other details are given in table A.3. 
 
 A variety of figures are deformed ellipses or triangles modified by a cardioid or 
limaçon of Pascal, i.e. cos( )r a b θ= ± . Such examples are numerous in the plant kingdom 
(leaves in particular). Model-13 (a and b) simulates such cases. Two simulation cases with 
different limits are tried (table A-3). The figures are presented in Fig-25 and Fig-26. In model-
14 measurements (21 in number) are taken from a (real-life) rose leaf. The estimated 
parameters are presented in table A.3 and the figure Fig.27.  
 
 The results of experiments with modification suggest that while the parameters of the 
modifier functions, ( )f θ , are more or less close to the true parameters, the exponential 
parameters of ( )g θ  vary so widely.  
 
Interpretation of Gielis Parameters: Gielis has not given any convincing arguments to 
explain the ‘physical’ meaning of the parameters of his equation. Nevertheless, an instance 
from the econometric literature may be useful to work out a plausible interpretation. 
 

Arrow et al. (1961), later on generalized for multi-level multi-factor case (Sato, 1970), 
visualized the technical relationship between production (Q) and the factors (Labour, L and 
capital, K) in the following form (well known as the CES production function): 

/
;[ (1 ) ] 0 1; 1; 0; 0.Q A L K Aη ββ βδ δ δ β η−− −= + − < < ≥ − > >   … (7) 

Writing 1x L−=  and 1y K −=  we may rewrite (7) in a form that resembles the Galis 
superformula (4). The points of difference, nevertheless, are that Gielis (i) does not use the 
distribution parameter (δ ), (ii) does not restrict the substitution parameter ( β ), (iii) allows for 
different exponents on x and y , and finally, (iv) allows for the rotational symmetry with the 
parameter m  other than 4 as well, while (7) assumes m = 4 tacitly. 
 
 In the function (7) above, the substitution parameter, β , measures the technical 
possibility of substitution between labour and capital without affecting the quantity of 
production, Q .  From this we get the so-called elasticity of substitution, 1/(1 ).σ β= +  When 

0σ �  we obtain the Leontief type of production function in which the ratio of labour to capital 
is fixed and they cannot be substituted for each other. On the other hand, when 1σ = , we have 
the Cobb-Douglas production function and so on. The homogeneity parameter, η , measures 
the returns to scale. If the quantities of labour and capital (both) are multiplied by a factor 
(1 )λ+  then as a response, Q  is multiplied by a factor (1 )ηλ+ . The scale economies (or 
diseconomies) are generated by the movement of the factor proportions towards (or 
backwards) the optimal mix of inputs.   
  

In case of a leaf we find it producing many types of output for the use by a plant  - for 
preparing food, respiration, balance of water, reproduction, and so on. On the other hand, 
venation greatly determines the dimensions of a leaf and its functions. In the light of 
substitutability, complementarity and scale economies one may venture upon some plausible 
interpretation of the Gielis parameters.   
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Appendix 

 
Table-A.1. True and Estimated Gielis Parameters with the Limits on them for Estimation 

Parameters 
xC  yC  a  b  1n  2n  3n  m  2S  

Tru 0.0 0.0 1.0 1.0 2.0 -3.0 -2.0 10.0 0.0 
LL -1.0 -1.0 0.9 0.9 0.0 -10.0 -10.0 7.0 
UL 1.0 1.0 1.1 1.1 10.0 -0.01 -0.01 12.0 

Most 
INF 

EP 0.0006 0.0001 1.0373 1.0637 3.8576 -6.3656 -4.0121 10.0766 0.3469 
LL -1.0 -1.0 0.9 0.9 0.0 -40.0 -40.0 7.0 
UL 1.0 1.0 1.1 1.1 40.0 -0.01 -0.01 12.0 

Less 
INF 

EP -0.0048 -0.0004 1.0677 1.0863 11.2376 -16.8018 -14.1361 9.9669 0.6184 
LL -1.0 -1.0 0.9 0.9 -20 -40.0 -40.0 7.0 
UL 1.0 1.0 1.1 1.1 20.0 40.0 40.0 12.0 

Least 
INF 

 
 

M 
O 
D 
E 
L 
# 
1 

EP -0.0532  0.0330 1.0712 1.0910 17.9964 -30.1576 -23.4136 10.9931 3.6401 
Tru 0.0 0.0 1.0 1.0 8.0 4.0 -4.0 6.0 0.0 
LL -1.0 -1.0 0.9 0.9 0.0 0.0 -20.0 5.0 
UL 1.0 1.0 1.1 1.1 20.0 20.0 -0.10 8.0 

Most 
INF 

EP 0.0011 -0.0010 0.9574 0.9961 13.0300 2.0972 -6.4395 6.0083 0.0036 
LL -1.0 -1.0 0.9 0.9 0.0 0.0 -50.0 5.0 
UL 1.0 1.0 1.1 1.1 50.0 50.0 -0.10 8.0 

Less 
INF 

EP -0.0042 -0.0019 1.0906 1.0084 14.7780 48.0280 -7.4458 5.9906 0.0058 
LL -1.0 -1.0 0.9 0.9 -20.0 -30.0 -30.0 5.0 
UL 1.0 1.0 1.1 1.1 20.0 30.0  30.0 8.0 

Least 
INF 

 
M 
O 
D 
E 
L 
# 
2 

EP -0.0000  -0.0026 0.9601 1.0129 12.8016 27.3690 -6.2526 5.9901 0.0153 
Tru 0.0 0.0 1.0 1.0 -3.0 4.0 4.0 12.0 0.0 
LL -1.0 -1.0 0.9 0.9 -20.0 0.0   0.0 10.0 
UL 1.0 1.0 1.1 1.1 -0.10 20.0  20.0 14.0 

Most 
INF 

EP 0.0003 -0.0041 1.0100 1.0323 -7.5329 8.2108 5.5700 12.0122 0.0149 
LL -1.0 -1.0 0.9 0.9 -60.0 0.0 0.0 11.0 
UL 1.0 1.0 1.1 1.1 -0.1 70.0 70.0 16.0 

Less 
INF 

EP 0.0033 -0.0063 1.0437 1.0038 -9.7169 6.7606 10.3439 12.0104 0.0246 
LL -1.0 -1.0 0.9 0.9 -50.0 -50.0 -50.0 11.0 
UL 1.0 1.0 1.1 1.1 50.0 50.0  50.0 14.0 

Least 
INF 

 
 

M 
O 
D 
E 
L 
# 
3 

EP 0.0009  -0.0004 1.0118 1.0459 -47.4170 42.1720 31.8440 12.0113 0.0266 
Tru 0.0 0.0 1.0 1.0 0.6 2.0 3.0 3.0 0.0 
LL -1.0 -1.0 0.9 0.9 0.0 0.0   0.0 1.0 
UL 1.0 1.0 1.1 1.1 7.0 7.0  7.0 7.0 

Most 
INF 

EP 0.0003 0.0046 1.0083 1.0094 2.6094 5.7157 2.8543 2.9785 0.0160 
LL -1.0 -1.0 0.9 0.9 0.0 0.0 0.0 2.0 
UL 1.0 1.0 1.1 1.1 80.0 80.0 80.0 9.0 

Less 
INF 

EP -0.0008 -0.0029 1.0467 1.0641 62.5760 63.4184 43.6816 3.003 0.1051 
LL -1.0 -1.0 0.9 0.9 -50.0 -50.0 -50.0  1.0 
UL 1.0 1.0 1.1 1.1 50.0 50.0  50.0 7.0 

Least 
INF 

 
 

M 
O 
D 
E 
L 
# 
4 

EP 0.0010  -0.0022 1.0110 1.0931 29.6980 40.6590 17.7510 3.0039 0.1143 
Tru = True Parameters,  LL=Lower Limits,  UL =Upper Limits,  EP = Estimated Parameters  
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Table-A.2. True and Estimated Gielis Parameters with the Limits on them for Estimation 

Parameters 
xC  yC  a  b  1n  2n  3n  m  2S  

Tru 0.0 0.0 1.0 1.0 8.0 4.0 -4.0 30.0 0.0 
LL -1.0 -1.0 0.9 0.9 0.0 0.0 -8.0 20.0 
UL 1.0 1.0 1.1 1.1 10.0 8.0  -0.1 38.0 

Most 
INF 

EP 0.0003 0.0001 1.0571 1.0056 5.5917 3.9574 -2.8744 30.0210 0.0254 
LL -1.0 -1.0 0.9 0.9 0.0 0.0 -70.0 28.0 
UL 1.0 1.0 1.1 1.1 40.0 80.0 -0.1 32.0 

Less 
INF 

EP 0.0000 -0.0005 1.0974 0.9923 28.2792 53.5144 -15.9981 30.0234 0.0804 
LL -1.0 -1.0 0.9 0.9 -70.0 -70.0 -70.0  27.0 
UL 1.0 1.0 1.1 1.1 70.0 70.0  50.0 32.0 

Least 
INF 

 
 

M 
O 
D 
E 
L 
# 
5 

EP 0.0029  -0.0020 0.9714 1.0958 28.7322 27.4134 -13.0928 30.1057 0.4957 
Tru 0.0 0.0 1.0 1.0 12.0 3.0 -7.0 12.0 0.0 
LL -0.01 -0.01 0.99 0.99 0.0 0.0 -20.0 11.0 
UL 0.01 0.01 1.01 1.01 20.0 20.0  0.0 14.0 

Most 
INF 

EP -0.0000 -0.0000 1.0092 1.0017 14.5776 17.8710 -8.5150 11.9986 0.0003 
LL -0.01 -0.01 0.99 0.99 0.0 0.0 -80.0 11.0 
UL 0.01 0.01 1.01 1.01 80.0 80.0   0.0 14.0 

Less 
INF 

EP 0.0000 -0.0000 1.0007 1.0043 23.2632 9.2800 -13.5368 12.0005 0.0002 
LL -0.01 -0.01 0.99 0.99 -80.0 -80.0 -80.0 11.0 
UL 0.01 0.01 1.01 1.01 80.0 80.0  80.0 14.0 

Least 
INF 

 
 

M 
O 
D 
E 
L 
# 
6 

EP 0.0006 0.0004 1.0029 0.9968 24.4480 33.5680 -14.5504 11.9997 0.0062 
Tru = True Parameters,  LL=Lower Limits,  UL =Upper Limits,  EP = Estimated Parameters 

 
 

Figures 
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Table-A.3. True & Estimated Gielis Parameters (Modified Curves) with  Limits on them 
 cx cy a b n1 n2 n3 m n4 n5 S2  

0 0 1 1 8 4 -4 6 1.1 0.1 0 T 
-0.1 -0.1 0.9 0.9 -80 -80 -80 2 1.0 0.01 LL  
0.1 0.1 1.1 1.1 80 80 80 10 1.5 0.30 UL  

M 
 # 
7 

0.0032 -0.0022 1.0621 0.9188 49.8240 -28.5680 6.0050 57.2304 1.1121 0.0872 0.0933 E 
0 0 1 1 -3 4  4 12 1.1 0.1 0 T 
-0.1 -0.1 0.9 0.9 -80 -80 -80 3 1.0 0.01 LL  
0.1 0.1 1.1 1.1 80 80 80 20 1.5 0.30 UL  

M 
 # 
8 

0.0022 0.0003 1.0374 1.0958 -67.1024 75.4592 45.6800 11.9911 1.1554 0.0975 0.0961 E 
0 0 1 1 8 4 - 4 30 1.1 0.1 0 T 
-0.1 -0.1 0.9 0.9 -80 -80 -80 10 1.0 0.01 LL  
0.1 0.1 1.1 1.1 80 80 80 40 1.5 0.30 UL  

M 
 # 
9 

0.0089 -0.0002 0.9236 0.9796 37.0944 67.7456 -15.3184 30.0064 1.0923 0.0920 0.3169 E 
0 0 1 1 -1.3 2.7 2.7 2.5 1 2.5 0 T 
-0.1 -0.1 0.9 0.9 -80 -80 -80 2 0.999 2 LL  
0.1 0.1 1.1 1.1 80 80 80 3 1.001 3 UL  

M 
 # 
10 

0.0000 0.0001 1.0664 1.0103 37.4576 48.3504 2.4818 -66.1872 1.0010 2.5056 0.0433 E 
0 0 1 1 2.5 5 5 2.5 1 2.5 0 T 
-0.001 -0.001 0.999 0.999 -80 -80 -80 2 0.9999 2 LL  
0.001 0.001 1.001 1.001 80 80 80 3 1.0001 3 UL  

M 
 # 
11 

-0.0004 0.0010 1.0008 1.0008 22.4576 34.4464 30.072 2.4994 1.0000 2.4998 0.0645 E 
0 0 1 1 0.6 2 3 3 1 2.5 0 T 
-0.1 -0.1 0.9 0.9 -80 -80 -80 2 0.999 2 LL  
0.1 0.1 1.1 1.1 80 80 80 7 1.001 3 UL  

M 
 # 
12 

0.0000 0.0001 1.0823 1.0453 59.1584 49.6272 46.7280 3.0038 0.9999 2.5021 0.0629 E 
0 0 1 1 0.6 2 3 3 2 1 0 T 
-1 -1 0 0 -80 -80 -80 1 1 0.999 LL  
1 1 2 2 80 80 80 30 3 1.001 UL  

M 
 # 
13 
(a) -.0288 0.0085 0.9754 1.7805 40.6960 7.6528 16.2752 5.9976 2.1041 0.9996 0.9529 E 

0 0 1 1 0.6 2 3 3 2 1 0 T 
-1 -1 0 0 -80 -80 -80 1 1.9 0.999 LL  
1 1 2 2 80 80 80 80 2.1 1.001 UL  

M 
 # 
13 
(b) -0.611 0.0440 1.2842 1.2270 50.1120 9.5152 65.4304 5.9881 1.9947 0.9998 1.9820 E 

Data points from a real Rose Leaf - True Parameters Unknown 
-4 -1 4 3 -80 -80 -80 2.9 1.9 0.999 LL  
4 1 7 5 80 80 80 30 2.1 1.001 UL  

R 
E 
A 
L 2.7986 0.0614 4.0662 4.8729 71.1760 51.9328 8.3136 4.0046 1.9935 1.0010 1.9717 E 
M=Model;  LL=Lower Limits;  UL=Upper Limite;  T=True Parameters; E=Estimated Parameters 
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